• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Geometry goes viral: Researchers use maths to solve virus puzzle

Bioengineer by Bioengineer
September 27, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have developed a new mathematical framework that changes the way we understand the structure of viruses such as Zika and Herpes

IMAGE

Credit: Prof Reidun Twarock, University of York.

Researchers have developed a new mathematical framework that changes the way we understand the structure of viruses such as Zika and Herpes.

The discovery, by researchers at the University of York (UK) and San Diego State University (US), paves the way for new insights into how viruses form, evolve and infect their hosts and may eventually open up new avenues in anti-viral therapy.

Viruses look like tiny footballs because they package their genetic material into protein containers that adopt polyhedral shapes.

The new theory revolutionises our understanding of how these containers are shaped, solving a scientific mystery that has endured for half a century.

For more than fifty years, scientists have followed the Caspar-Klug theory (CKT) about how the protein containers of viruses are structured. However, improvements in our ability to image viral particles at high resolution have made it apparent that many virus structures do not conform to these blueprints.

Published in the journal Nature Communications, the new theory accurately predicts the positions of proteins in the containers of all icosahedral (or twenty-sided) for the first time. It simultaneously works for viruses that conform to CKT and for those that posed an unresolved problem to that theory.

Professor Reidun Twarock, mathematical biologist at the University of York’s departments of Mathematics and Biology and a member of the York Cross-disciplinary Centre for Systems Analysis, said: “Our study represents a quantum leap forward in the field of structural virology, and closes gaps in our understanding of the structures of many viruses that are ill described by the existing framework.

“This theory will help scientists to analyse the physical properties of viruses, such as their stability, which is important for a better understanding of the mechanism of infection. Such insights can then be exploited for the development of novel anti-viral strategies.

“In particular the structures of larger and more complex viruses that are formed from multiple different components were previously not well understood.

“Our over-arching scheme reveals container architectures with protein numbers that are excluded by the current framework, and thus closes the size gaps in CKT.

“The new blueprints also provide a new perspective on viral evolution, suggesting novel routes in which larger and more complex viruses may have evolved from simple ones at evolutionary timescales.”

Dr Antoni Luque, theoretical biophysicist at San Diego State University and their Viral Information Institute, said: “We can use this discovery to target both the assembly and stability of the capsid, to either prevent the formation of the virus when it infects the host cell, or break it apart after it’s formed. This could facilitate the characterization and identification of antiviral targets for viruses sharing the same icosahedral layout.”

###

Structural puzzles in virology solved with an overarching icosahedral design principle is published in Nature Communications. The study was supported by the EPSRC, the Royal Society, the Wellcome Trust and San Diego State University.

Media Contact
Shelley Hughes
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12367-3

Tags: BiologyMathematics/StatisticsVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Diverse Strategies Enable Fly Embryos to Resolve the Challenge of ‘Tissue Tectonic Collision’

September 9, 2025
blank

Elephant Group Size and Age in Serengeti vs. Mikumi

September 9, 2025

Tiny Genetic Light Switches Revolutionize Disease Control

September 9, 2025

Research Spotlight: Immune Defense Creates Openings in the Heart

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diverse Strategies Enable Fly Embryos to Resolve the Challenge of ‘Tissue Tectonic Collision’

Optimizing Energy-Level Alignment in Perovskite Solar Cells: Insights from an Energy Flow Perspective

Tiny Yet Mighty: Metamaterial Lenses Revolutionize Phones and Drones

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.