• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, September 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Gentle method allows for eco-friendly recycling of solar cells

Bioengineer by Bioengineer
April 13, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By using a new method, precious metals can be efficiently recovered from thin-film solar cells. This is shown by new research from Chalmers University of Technology, Sweden. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.

Thin-film solar cells on roof tiles

Credit: Midsummer

By using a new method, precious metals can be efficiently recovered from thin-film solar cells. This is shown by new research from Chalmers University of Technology, Sweden. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.

Today there are two mainstream types of solar cells. The most common is silicon-based and accounts for 90 percent of the market. The other type is called thin-film solar cells which in turn uses three main sub-technologies, one of which is known as CIGS (Copper Indium Gallium Selenide), and consists of a layer of different metals, including indium and silver. Thin-film solar cells are by far the most effective of today’s commercially available technologies. They can also be made bendable and adaptable, which means that they can be used in many different areas. The problem is that the demand for indium and silver is high, and increased production is accompanied by a growing amount of production waste, which contains a mixture of valuable metals and hazardous substances. Being able to separate attractive metals from other substances, therefore, becomes extremely valuable, both economically and environmentally, as they can be reused in new products.

“It is crucial to remove any contamination and recycle, so that the material becomes as clean as possible again. Until now, high heat and a large amount of chemicals have been used to succeed, which is an expensive process that is also not environmentally friendly”, says Ioanna Teknetzi, PhD student at the Department of Chemistry and Chemical Engineering, who together with Burcak Ebin and Stellan Holgersson published the new results in the journal Solar Energy Materials and Solar Cells.

Now their research shows that a more environmentally friendly recycling process can have the same outcome.

“We took into account both purity and environmentally friendly recycling conditions and studied how to separate the metals in the thin-film solar cells in acidic solutions through a much ‘kinder’ way of using a method called leaching. We also have to use chemicals, but nowhere near as much as with previous leaching methods. To check the purity of the recovered indium and silver, we also measured the concentrations of possible impurities and saw that optimisation can reduce these”, says Ioanna Teknetzi.

The researchers showed that it is possible to recover 100 percent of the silver and about 85 percent of the indium. The process takes place at room temperature without adding heat.

“It takes one day, which is slightly longer than traditional methods, but with our method, it becomes more cost-effective and better for the environment. Our hopes are that our research can be used as a reference to optimise the recycling process and pave the way for using the method on a larger scale in the future”, says Burcak Ebin.

 

The method

1. The film from the solar cell is analysed with respect to material, chemical composition, particle size and thickness. The solar cell is placed in a container with an acid solution at the desired temperature. Agitation is used to facilitate dissolution of metals in the acid solution. This process is called leaching.

2. Leaching effectiveness and chemical reactions are assessed by analysing samples taken at specific times during the leaching process. The different metals are leached at different times. This means that the process can be stopped before all the metals begin to dissolve, which in turn contributes to achieving higher purity.

3. When the leaching is complete, the desired metals are in the solution in the form of ions and can be easily purified to be reused in the manufacture of new solar cells.

 

More about the study

Valuable metal recycling from thin film CIGS solar cells by leaching under mild conditions has been published in Solar Energy Materials and Solar Cells. The authors are Ioanna Teknetzi, Burcak Ebin and Stellan Holgersson at the Department of Chemistry and Chemical Engineering at Chalmers University of Technology. The study has been carried out at Chalmers Material Analysis Laboratory, CMAL, and the research has received funding from the Swedish Energy Agency.

 

For more information, please contact:

Ioanna Teknetzi, PhD student, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, [email protected]

Dr. Burcak Ebin, researcher, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, +46 31 772 17 29, [email protected]

Dr. Stellan Holgersson, researcher, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, +46 31 772 28 02, [email protected]

 

 

Caption: Thin-film solar cells are highly efficient and can be made bendable and adaptable, meaning they can be used in a wide range of areas, such as here on roof tiles. Photo of solar cells: Midsummer



Journal

Solar Energy Materials and Solar Cells

DOI

10.1016/j.solmat.2022.112178

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Valuable metal recycling from thin film CIGS solar cells by leaching under mild conditions

Article Publication Date

16-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Microresonator

Researchers fabricate chip-based optical resonators with record low UV losses

September 26, 2023
SRI spins out Synfini, Inc

SRI spins off AI-powered drug discovery platform Synfini, Inc.

September 26, 2023

Genetically engineering associations between plants and nitrogen-fixing microbes could lessen dependence on synthetic fertilizer

September 26, 2023

A close-up of biological nanomachines: Researchers at Münster University take a deep look at peroxisomal processes

September 26, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A novel role discovered for vagus nerve

Patients who quit smoking after percutaneous coronary intervention do as well as non-smokers – unless they had smoked heavily

THE LANCET: Gender inequalities worsen women’s access to cancer prevention, detection and care; experts call for transformative feminist approach

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In