• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Genomic sequencing illuminates recent Shigella outbreaks in California

Bioengineer by Bioengineer
December 23, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(SACRAMENTO, Calif.) — In a study that could have significant impact on how disease outbreaks are managed, researchers at UC Davis and the California Department of Public Health (CDPH) have sequenced and analyzed genomes from Shigella sonnei (S. sonnei) bacteria associated with major shigellosis outbreaks in California in 2014 and 2015.

The results offer new insights into how the bacteria acquired virulence and antibiotic resistance genes, as well as the California strains' relationships to other strains around the world. This was the first major, whole-genome study of S. sonnei strains found in North America. The research was published in the journal mSphere.

"If you have an outbreak and you want to know what is causing a particular problem, like antibiotic resistance, sequencing the genome can identify the genes involved," said Jonathan Eisen, professor with appointments in the Department of Medical Microbiology and Immunology and the Department of Evolution and Ecology at UC Davis and a collaborator on the study.

"Eventually, we should be able to sequence whole genomes of bacteria to support patient care," he said.

One of four Shigella species, S. sonnei is responsible for most shigellosis outbreaks and can cause abdominal pain, diarrhea and other gastrointestinal problems. Each year, shigellosis causes around 500,000 infections, 6,000 hospitalizations and 70 deaths in the U.S.

The investigators from the Microbial Diseases Laboratory at CDPH sequenced the genomes of 68 isolates, including samples from the recent California outbreaks and historical strains from California, Asia and elsewhere. They also tested for antibiotic resistance.

The team found two clusters in these outbreaks: one that primarily struck San Diego and the San Joaquin Valley and one more localized to the San Francisco Bay Area.

The San Diego/San Joaquin strain has been in California since at least 2008. However, some of the isolates had been infected with a bacteriophage (a virus that attacks bacteria) that carried a Shiga toxin (STX) gene found in the more virulent S. flexneri and S. dysenteriae.

"Shigella sonnei bacteria normally cause a less severe disease and are not known to produce Shiga toxin," said Dr. James Watt, Chief, Division of Communicable Disease Control at CDPH.

"The toxin gene was most likely acquired by Shigella sonnei via genetic exchanges with E. coli and other Shigella species. Discovering a functional toxin gene was concerning in this large outbreak. Finding this gene raises concerns that illness due to Shigella sonnei could become more severe in the future," Watt said.

By contrast, the strain that hit San Francisco lacked STX but contained genes that gave it resistance to the broad-spectrum fluoroquinolone class of antibiotics. The fluoroquinolone-resistance genes were similar to ones found in strains from Southeast Asia. These findings provide important clues to the strains' origins.

"We know these movements of DNA can be important for the spread of antibiotic resistance, virulence and pathogenicity factors," Eisen said. "Having the genome data from outbreaks allows us to try to figure out what happened."

The researchers believe similar studies might ultimately benefit patients. Understanding a pathogen's genetic variants could inform antibiotic choices and even help improve hospital procedures.

"If you can show that the transfer of antibiotic resistance genes came in response to some kind of treatment, you would certainly think about isolating people who were receiving that treatment, potentially sampling them more often or even changing treatments," explained Eisen.

Before that can happen, genomic sequencing must become a routine part of the nation's pathogen-surveillance model.

"It is clear, from a technical, economic, and scientific point of view, that we can and should be integrating more genome sequencing into infectious disease studies," Eisen said.

###

Other authors included Varvara K. Kozyreva, Alexander L. Greninger, James P. Watt and Vishnu Chaturvedi at CDPH and Guillaume Jospin at UC Davis.

Media Contact

Carole Gan
[email protected]
916-496-7420
@UCDavisHealth

http://www.ucdmc.ucdavis.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Berkeley Surface Emitting Laser

New single-mode semiconductor laser delivers power with scalability

June 29, 2022
Studying chemicals in wastewater

Monitoring COVID-19: Could medicine found in wastewater provide an early warning?

June 29, 2022

Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations

June 29, 2022

Destruction and recovery of kelp forests driven by changes in sea urchin behavior

June 29, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryUrogenital SystemVaccineZoology/Veterinary ScienceWeather/StormsVirusUrbanizationUniversity of WashingtonVaccinesVirologyVehiclesViolence/Criminals

Recent Posts

  • New single-mode semiconductor laser delivers power with scalability
  • Monitoring COVID-19: Could medicine found in wastewater provide an early warning?
  • Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations
  • Destruction and recovery of kelp forests driven by changes in sea urchin behavior
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....