• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Genome technology boosts malaria control efforts

Bioengineer by Bioengineer
February 13, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

While most malaria research has focused on the parasite Plasmodium falciparum, which is common in Africa, another parasite, Plasmodium vivax (P.vivax) is responsible for the majority of malaria infections outside this region, causing an estimated 15.8 million clinical malaria cases each year. The parasite is becoming increasingly resistant to common antimalarial drugs, posing challenges for malaria elimination.

Institute researchers Dr Alyssa Barry and Professor Ivo Mueller are part of two international teams studying P.vivax. The teams used cutting-edge genomic techniques to analyse hundreds of clinical samples from malaria-infected people around the globe. The research led to two complementary publications in this month's edition of Nature Genetics.

The teams discovered patterns of variation that are the result of both ancient events and recent selection.

"Overall we found that the parasites are remarkably diverse," Professor Mueller said. "The patterns of genetic diversity appear to both result from ancient human migrations and follow historical routes of human movement, including those associated with colonization of the Americas in the 16th to 19th century and links between Africa, India and Europe."

The researchers also found signs that the parasite population is continuing to evolve in response to recent factors such as drug treatment.

"Drug resistant parasites are firmly established in certain regions, including Indonesia and Papua New Guinea, creating huge challenges for malaria control efforts. We found that parasites in these regions have strong genetic signatures of adaptation to antimalarial drugs.

"We can now use this information to study the causes of drug resistance and improve how we monitor the disease," Dr Barry said.

The researchers also examined parasite diversity within an individual.

"Zooming in on individuals revealed that while some people are infected with a single strain of P.vivax, other people have more complex, mixed infections with multiple strains of parasites," Dr Barry said. "Understanding the diversity of parasites both within an individual and around the globe is an important step towards understanding how malaria is transmitted and in the longer term finding new strategies to control this deadly disease."

###

The research was supported by the Victorian State Government Operational Infrastructure Support Scheme, the National Health and Medical Research Council, Wellcome Trust, UK, the Medical Research Council, UK, the Department for International Development, UK, National Institutes of Health, USA, Sao Paulo Research Foundation, Brazil, National Institute of Public Health, Mexico, Armed Forces Health Surveillance Center, Global Emerging Infections Surveillance and Response System (USA) and the Bill & Melinda Gates Foundation.

Media Contact

Ebru Yaman
[email protected]
042-803-4089
@WEHI_research

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

Optimal Blastocyst Count for PGT-A in RPL Patients

October 3, 2025

Narrative Nursing Boosts Diabetes Management in Seniors

October 3, 2025

From Parkinson’s to Rare Diseases: Scientists Discover a Key Cellular Health Switch

October 3, 2025

SMFM Releases Updated Guidelines for Diagnosing and Managing Heart Failure in Pregnancy and Postpartum

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance CO₂ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.