• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Geneticists reveal how mutation causes childhood cancer; use drug to reverse its effects

Bioengineer by Bioengineer
July 22, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Trinity College Dublin.

Geneticists from Trinity College Dublin have discovered how a specific genetic mutation called H3K27M causes a devastating, incurable childhood cancer, known as diffuse midline glioma (DMG), and – in lab studies working with model cell types – successfully reverse its effects to slow cancer cell growth with a targeted drug.

Their landmark work – just published in leading international journal, Nature Genetics and supported by Worldwide Cancer Research and The Brain Tumour Charity – translates crucial new understanding of the genetics of DMG progression into a highly promising, targeted therapeutic approach and offers significant hope of improved treatments in the future.

The scientists now call for clinical trials to begin imminently, in which an already approved class of drugs called “EZH2 inhibitors” can be assessed. These drugs target the same key biological pathway involved in DMG as they do successfully in lymphomas and sarcomas — two cancers common in adults.

Key findings and implications

The scientists behind this important work discovered:

  • How a specific genetic mutation called H3K27M causes DMG

  • How to target this cancer-causing gene with a drug that slows cancer cell growth

  • They have also established a specific model cell line for evaluating further targeted DMG approaches

    Adrian Bracken, Professor in Trinity’s School of Genetics and Microbiology, led the exciting research.

He said: “We’ve taken a huge step forward in our study of DMG tumours and hope that the insights will help us design and implement precision oncology-based treatment approaches in DMG patients in the future. Crucially, ‘EZH2 inhibitor’ drugs have already received approval from the United States Food and Drug Administration for the treatment of two types of adult cancer. We propose these drugs could be impactful for children with DMG and, as a result, call for clinical trials to begin next.

“Ultimately, we hope that our work – together with that of others focused in this area – will lead to curative clinical approaches for what is a truly terrible disease that can devastate families and for which there are currently no therapeutic options.”

Paediatric gliomas – harrowing, devastating cancers

Paediatric gliomas like DMG are among the most devastating of childhood cancers. Tumours typically arise in the brain and are very challenging to treat, with prognosis extremely poor. As such, effective therapeutic options are urgently needed.

Dr Jane Pears, paediatric consultant oncologist at Our Lady’s Children’s Hospital, Crumlin, who treats children with this disease said: “Despite combined best efforts, these tumours remain a devastating diagnosis for children and their families. The best treatment we can currently offer may extend survival for a few months but is not curative. We are now entering an exciting era of expansion of our knowledge of this disease at a molecular level, which in turn will lead us towards more targeted treatments. Thanks to collaborative translational efforts between scientists, such as Prof. Bracken and his team working in the laboratory, and doctors in the clinical setting, this will hopefully lead to the improved outcomes that we all so dearly wish to see.”

Speaking to the importance of the work, Maeve Lowery, Professor of Translational Cancer Medicine at Trinity, and Academic Director of the Trinity St James’s Cancer Institute (TSJCI) said: “These findings have the potential to transform the treatment landscape of DMG tumours and improve outcomes for children with this challenging disease. Importantly, this pivotal work illustrates the success of a precision oncology approach – where understanding how cancers develop on a genomic level can accelerate the development of more effective treatments with less side effects. The Precision Oncology Research Program at TSJCI, led by Prof Bracken, will build on this success to continue to develop new and innovative treatment strategies for adult and childhood cancers.”

Dr Becky Birch, Head of Research at The Brain Tumour Charity, which helped fund the study, said: “This is a really promising discovery that we hope will now pave the way for new and targeted treatments to be developed for children with diffuse midline gliomas (DMGs). With average survival still heartbreakingly short at less than 12 months, we urgently need to find new options to help slow the growth of this rare and often-inoperable cancer and give children diagnosed more time to live. It’s really exciting that we now better understand how a specific genetic mutation may be driving the disease, and even more so that drugs that may inhibit this process have already been tested in other cancers. If further research can now design EZH2 inhibitors to more effectively target DMG cells, we hope these drugs can be quickly advanced into clinical trials for children diagnosed with this devastating disease.”

Developing cancer treatments – why this research is different

Ordinarily, developing effective cancer treatments can take decades; indeed, it can take years before scientists are able to develop model systems in relevant cell types that afford them the chance to “look under the genetic bonnet”.

Such investigations can first help us understand how cancers function. That information then provides the all-important clues as to how we can fight them. Further lab-based studies can hone these approaches, ultimately opening the doors to clinical trials and, if we’re lucky, improved treatments.

The scientists behind this study have therefore taken great strides in the battle against DMG, having discovered key aspects of this disease at a genetic level; proposed an available strategy to target it; and created a model of the disease that can be used in continued work to advance further improved treatment strategies.

###

Media Contact
Adrian Bracken
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41588-021-00897-w

Tags: cancerClinical TrialsGenesGeneticsMedicine/HealthPharmaceutical SciencePharmaceutical Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Hundreds of Satellite Systems Discovered Orbiting Dwarf Galaxies in New Survey

August 5, 2025
Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

August 5, 2025

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

August 5, 2025

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking Bone Formation and Blood Vessel Growth through Interlineage Paracrine Signaling

World Models Power End-to-End Accident Prediction

Deep Sequencing Reveals Plasmodium vivax Lineages

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.