• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Genetic molecular mechanisms of neural development identified

Bioengineer by Bioengineer
March 9, 2014
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neural development is an extremely complex and highly orchestrated process, involving genetic cascades during which dozens of genes are activated at specific times and places.

Genetic molecular mechanisms of neural development identified

Neural by CEL-Arts

Polycomb-group (PcG) proteins play an important role by reversibly repressing the activity of a set of developmental regulatory genes. Now, Haruhiko Koseki, Takashi Kondo and colleagues from the RIKEN Center for Integrative Medical Sciences and RIKEN Brain Science Institute have revealed the mechanisms by which one member of the PcG protein family regulates the activity of a control gene called Meis2.

PcG genes, which were first identified in the fruit fly Drosophila melanogaster, encode two protein complexes called Polycomb-group repressive complexes 1 and 2 (PRC1 and PRC2) that silence target genes by recognizing and binding to DNA sequences called Polycomb responsive elements (PREs). A number of explanations for the mechanism of gene silencing have been proposed, but as many of the genes of interest are found in complex clusters on the genome, it has proved difficult to study the interactions among functional DNA elements and the individual proteins involved.

Koseki and his colleagues overcame this difficulty by studying how a particular PcG protein interacts with the Meis2 gene. The Meis2 gene occupies a large segement of genome and the PcG binding sites within it are separated by large distances, making its interactions with regulatory proteins far easier to study.

In a series of experiments involving cell culture, staining with fluorescent antibodies, and biochemical assays of DNA and proteins isolated from normal and genetically engineered mice, Kondo and his colleagues showed that Meis2 repression depends on the binding of a protein called RING1B to a regulatory DNA sequence known as a promoter at the front end of the Meis2 gene. This is followed by interaction with another regulatory sequence called the RING1B-binding site (RBS) at the other end of the gene.

During early development of the midbrain, the DNA–protein complex associates with another regulatory DNA sequence called the midbrain-specific enhancer (MBE) and this interaction is dependent upon RING1B. The RBS–RING1B complex then detaches itself, leaving the promoter–MBE complex to activate the Meis2 gene. The results show that PcG proteins are involved in the activation process by bringing the enhancer and promoter together.

“We are now trying to identify the components needed for binding the enhancer in order to bring it to the promoter and also for kicking out the PcG protein from the promoter,” says Kondo. “If we can understand more about these mechanisms, it may lead to clinical applications in the future.”

Story Source:

The above story is based on materials provided by The Riken Center.

Share12Tweet8Share2ShareShareShare2

Related Posts

Redox biomarker could predict progression of epilepsy

October 5, 2016

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Identifying Healthcare Waste Behavior: An Australian Case Study

Capsaicin, Nicotine Ease MPTP Olfactory Dysfunction via Neuroinflammation Suppression

Brain Tumors Disrupt Skull Bone and Immune Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.