• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genes that separate humans from fruit flies found

Bioengineer by Bioengineer
September 30, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Free Stock Photos.com

Genes that separate humans from fruit flies found

Genes which determine animal complexity – or what makes humans so much more complex than a fruit fly or a sea urchin – have been identified for the first time.

The secret mechanism for how a cell in one animal can be significantly more complex than a similar cell in another animal appears to be due to proteins and their ability to control 'events' in a cell's nucleus.

The research, by biochemist Dr Colin Sharpe and colleagues in the University of Portsmouth, is published in PLoS One.

Dr Sharpe said: "Most people agree that mammals, and humans in particular, are more complex than a worm or a fruit fly, without really knowing why. The question has been nagging at me and others for a long time.

"One common measure of complexity is the number of different cell types in an animal, but little is known about how complexity is achieved at the genetic level. The total number of genes in a genome is not a driver, this value varies only slightly in multicellular animals, so we looked for other factors."

Dr Sharpe and MRes student, Daniela Lopes Cardoso interrogated large amounts of data from the genomes of nine animals – from humans and macaque monkeys to nematode worms and the fruit fly, and calculated how diverse each was at the genetic level.

They found a small number of proteins which were better at interacting with other proteins and with chromatin, the packaged form of DNA in the cell nucleus.

"These proteins appear to be excellent candidates for what lies behind enormously varied degrees of complexity in animals," Dr Sharpe said.

"We expected to identify genes that interacted directly with DNA to regulate other genes, but this was not the case. Instead we identified genes that interacted with 'chromatin'.

"Our results suggest that the increased ability of certain proteins to interact with each other to regulate the dynamic organisation of chromatin in the nucleus as a component of animal complexity."

The results matter, he said, because biomedical scientists depend on better understanding human disease by studying it in animals. While this has value, there is an underlying concern that an animal model may be too simple to be useful, that results seen in a simpler animal may not correlate with what happens in a more complex animal.

Understanding the inherent differences in how animals are organised at genetic level and the limitations to interpretations that this imposes, will provide a more rational selection of appropriate animal models in biomedicine.

Dr Sharpe and team's previous research found that three factors lay behind the proteins made by one gene – NCoR – being more diverse in complex animals such as humans compared to, for example, sea urchins:

– Gene duplication, although the total number of genes in the genome doesn't vary significantly, some specific genes duplicate one or more times, for example there is one NCoR gene in sea urchin and two in humans.

– Single genes often make more than one protein. The messenger RNA (mRNA) that links gene to protein can be processed by 'splicing' to generate a range of different mRNAs, each of which encodes a related, but different protein. For example, the sea urchin gene produces just one type of RNA while in humans the NCoR2 gene produces well over 30 and each is likely to have a different function.

– Most proteins consist of domains that have a specific function. Dr Sharpe and team found that the number of domains increases, again with NCoR, from one in sea urchins to three in humans.

ENDS

Full manuscript of study available from [email protected]

CAPTIONS:

– Protein may be the single underlying difference between worms and humans

– What makes us so different to a sea urchin? Sea urchins have just one NCoR gene, while humans have two

– Macaque monkey: Dr Sharpe and MRes student, Daniela Lopes Cardoso interrogated large amounts of data from the genomes of nine animals – from humans and macaque monkeys to nematode worms

– Biochemist Dr Colin Sharpe

###

Media Contact

Kate Daniell
[email protected]
44-239-284-3743

http://www.port.ac.uk

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover New Switch That Triggers Programmed Cell Death

November 3, 2025
blank

Agricultural Practices: A Key Factor in the Preservation or Degradation of Protected Areas

November 3, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Potential Health Risks Linked to Prolonged Melatonin Supplement Use for Sleep

Scientists Introduce Breakthrough Gene-Switch Technology

Gene Discovered to Enhance Heart’s Self-Recovery After Attack or Failure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.