• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, March 26, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Gene transfer on the fungal highway

Bioengineer by Bioengineer
December 14, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Berthold et al. 2016 in Scientific Reports

For bacteria, soil is difficult terrain, with dry areas and air spaces presenting insurmountable obstacles. In order to get around, they need a liquid film in which to swim. They don't demand much: the mucous layer surrounding fungal hyphae is all they need to be able to move around — and they take advantage of it. The fungal network (mycelium) also provides bacteria with an excellent infrastructure: there may be hundreds of metres of fungal hyphae winding through just one gram of soil. "In the fine liquid film surrounding the hyphae, bacteria can move with much greater speed and direction and cover more distance than in soil water without hyphae," says Tom Berthold, first author of the study and a doctoral researcher at the UFZ Department of Environmental Microbiology. "For bacteria, fungal hyphae are like a motorway which gives them fast, direct access to their food sources."

Because there is often a lot of traffic on the 'fungal highway', the bacteria may come into close contact with one another, exchanging genetic material in the process. "It's similar to the transmission of cold germs on a packed train," explains environmental microbiologist Dr. Lukas Y. Wick. "But unlike a cold, the new genes are usually an asset to the soil bacteria. They enable them to adapt better to different environmental conditions." Depending on the genes they receive through horizontal gene transfer, they may be able to adapt to new environmental conditions or access food sources which they were previously unable to exploit. For example, this might include the pollutants toluene or benzene contained in oil and gasoline, which to bacteria with the right genetic makeup are not only not harmful but actually very tasty food. So the passing on of this ability to other bacterial groups can be very advantageous in terms of the degradation of soil pollutants.

In their research, the UFZ scientists were also able to show that much greater gene transfer takes place between bacteria on the fungal highway than in a moist environment without fungal hyphae. Using computer models that calculate the frequency of gene transfer between bacteria on the hyphae, the researchers came to the same result. Wick continues: "Our study shows that fungal hyphae not only provide soil bacteria with an excellent infrastructure, but also a potential hot spot for bacterial horizontal gene transfer. This previously unknown aspect of fungus-bacteria interaction is an important step towards understanding the complex interactions between soil-dwelling microorganisms."

Fungi therefore may play a very important role in the highly complex soil habitat: in the spread of soil bacteria, their genetic adaptation and diversity, and ultimately also their evolution. "Just a few years ago, we were still completely unaware of this," says Wick. "It's possible that over the course of the Earth's history, bacterial diversity increased massively with the development of mycelium-forming fungi." As far as the breakdown of pollutants is concerned, the UFZ researchers conjecture that soils containing a lot of fungi are probably better equipped than soils with few fungi. This is because the fungal highway enables pollutant-degrading bacteria to reach their food faster and, with the help of gene transfer, they may even be upgraded along the way.

###

Useful link:

Video "Bacteria on the 'Fungal Highway': Pseudomonas putida moving along hyphae of Cunninghamella elegans": https://www.youtube.com/watch?v=AnsYh6511Ic

Media Contact

Dr. Lukas Wick
[email protected]
49-341-235-1316
@ufz_de

http://www.ufz.de/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Picture1.png

Is early rhythm control in atrial fibrillation care cost-effective?

March 25, 2023
Transitions of low and high-entropy metal tellurides.

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

March 25, 2023

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

March 24, 2023

New type of entanglement lets scientists ‘see’ inside nuclei

March 24, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    65 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Is early rhythm control in atrial fibrillation care cost-effective?

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In