• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gene regulators work together for oversized impact on schizophrenia risk

Bioengineer by Bioengineer
September 23, 2019
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Modeled gene expression changes match those found in patients’ brains

IMAGE

Credit: Seok-Man Ho, Icahn School of Medicine at Mount Sinai

Researchers have discovered that gene expression regulators work together to raise an individual’s risk of developing schizophrenia. Schizophrenia-like gene expression changes modeled in human neurons matched changes found in patients’ brains. The researchers, led by Kristen Brennand, of the Icahn School of Medicine at Mount Sinai, New York City, report on their findings in Nature Genetics. The work was funded by the National Institute of Mental Health (NIMH), part of the National Institutes of Health.

Genome-wide association studies have revealed at least 143 chromosomal sites associated with risk for schizophrenia. However, individually, each of these sites can explain only a small fraction of the risk. Even when the effects of disease-linked rare genetic variants are factored in, most of schizophrenia’s known high inheritance remains unexplained. One possible clue: more than 40% of the suspect chromosomal sites contain regulators, called expression quantitative trait loci, or eQTLs, that govern the expression of multiple genes.

“Individually, these gene regulators have a modest effect on the brain. Working in concert, they exert different and more significant effects on the brain–effects that boost schizophrenia risk,” explained David Panchision, chief of the Developmental Neurobiology Program at NIMH. “Learning more about the downstream cellular and molecular effects of such synergy holds hope for advances in precision psychiatry and more personalized medicine.”

To explore the role of these regulators, Brennand and colleagues studied them in induced neurons using a molecular modeling technology. This induced pluripotent stem cell method makes it possible to grow a person’s unique neurons in a petri dish using stem cells derived from their skin cells. The researchers used the model to take a closer look at the downstream molecular consequences of gene expression changes known to occur in schizophrenia, and compared them with changes seen in postmortem brains and similarly modeled neurons of people with the illness.

The researchers experimentally mimicked the interaction of multiple risk genes thought to contribute to schizophrenia. They used the gene editing tool CRISPR to simultaneously increase or decrease expression of four schizophrenia-implicated genes known to harbor eQTLs. The genes were selected because they were deemed most likely to confer disease risk by regulating gene expression. To trigger changes in the direction predicted to heighten risk for schizophrenia, expression was increased for three of the genes and decreased for one.

Manipulating expression of the four genes altered expression of 1,261 other genes – 665 increased and 596 decreased. This was many more than would be expected if the genes had been merely acting individually, suggesting an underlying mechanism that is synergistic rather than additive.

“This unexpected synergy between gene variants demonstrated how even subtle genetic variations can impact neuronal function,” said Brennand. “These interactions emphasize the importance of considering the complex nature of schizophrenia and other psychiatric disorders, where a combination of gene variants contributes to disease.”

Many of the genes affected downstream contained variants that had been linked to autism spectrum disorder or bipolar disorder, in addition to schizophrenia – consistent with other research suggesting genetic overlap across mental disorders.

The experimentally induced gene expression changes mirrored those seen in postmortem brains of people with the three mental illnesses. The same changes were also seen in induced pluripotent stem cell neurons from people with childhood-onset schizophrenia, a rare form of the illness thought to be more genetic in origin.

“Notably, all of these gene changes resulted in loss-of-brain-function effects when screened one-at-a-time in a zebrafish model,” said Brennand. “We have added several of them to a list of genes worthy of further study for possible involvement in schizophrenia. There is an overwhelming need for future studies to similarly model such multi-gene interactions in complex cells and circuits.”

###

REFERENCE: Schrode N, Ho S-M, Yamamuro K, Dobbyn A, Huckins L, Matos MR. Cheng E, Deans PJM, Flaherty E, Barretto N, Topol A, Alganem K, Abadali S, Gregory J, Hoelzli E, Phatnani H, Singh V, Girish D, Aronow B, Mccullumsmith R, Hoffman GE, Stahl EA, Morishita H, Sklar P, Brennand KJ. Synergistic effects of common schizophrenia risk variants. Nature Genetics, September 23, 2019. DOI: 10.1038/s41588-019-0497-5

FOR MORE INFORMATION:

Mount Sinai video

Faculty Spotlight: Kristen Brennand, Ph.D.

https://youtu.be/oU2U_W2Xx0w

schizophrenia https://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml

Kristen Brennand

https://icahn.mssm.edu/profiles/kristen-brennand

GWAS studies

https://www.genome.gov/about-genomics/fact-sheets/Genome-Wide-Association-Studies-Fact-Sheet

schizophrenia genetic risk

https://www.nimh.nih.gov/about/strategic-planning-reports/highlights/highlight-skyline-drivers.shtml

NIMH Developmental Neurobiology Program

http://www.nimh.nih.gov/about/organization/dnbbs/molecular-cellular-and-genomic-neuroscience-research-branch/developmental-neurobiology-program.shtml

CRISPR

https://www.broadinstitute.org/what-broad/areas-focus/project-spotlight/questions-and-answers-about-crispr

autism spectrum disorder

https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd/index.shtml

bipolar disorder

https://www.nimh.nih.gov/health/topics/bipolar-disorder/index.shtml

About the National Institute of Mental Health (NIMH):

The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website, http://www.nimh.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit the NIH website, http://www.nih.gov.

Media Contact
Jules Asher
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41588-019-0497-5

Tags: BehaviorCell BiologyGeneticsMedicine/HealthMemory/Cognitive ProcessesMental HealthMolecular BiologyneurobiologyNormalcyPerception/Awareness
Share13Tweet8Share2ShareShareShare2

Related Posts

Youth Violence Prevention Program Demonstrates Up to 75% Reduction in Arrest Rates

Youth Violence Prevention Program Demonstrates Up to 75% Reduction in Arrest Rates

August 14, 2025
blank

Nationwide Study Links Environment to Activity

August 14, 2025

Cancer Imaging Technique Enhances Monitoring and Treatment of Atherosclerosis

August 13, 2025

Human Emissions Shape Recent North Pacific Climate

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Youth Violence Prevention Program Demonstrates Up to 75% Reduction in Arrest Rates

Accelerating Detection of Shadows in Fusion Systems Using AI

New Fossil Finds Unveil a Previously Unknown Ancient Human Species, Shedding Light on Evolution

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.