• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fungal species naturally suppresses cyst nematodes responsible for major sugar beet losses

Bioengineer by Bioengineer
October 29, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: James Borneman

The plant pathogenic nematode Heterodera schachtii infects more than 200 different plants, including sugar beets, and causes significant economic losses. Over the past 50 years, the primary management tool in California has been crop rotation. When the number of H. schachtii in a soil exceeds a threshold, growers are contractually required by the local sugar factory to plant crops that do not support the nematode’s reproduction. This practice reduces the nematode population so that the next sugar beet crop can flourish.

In a recent study from plant pathologists at the University of California, Riverside, the authors examined a soil fungus that parasitizes the nematode’s females and eggs. This fungus, Hyalorbilia aff. multiguttulata (formerly Dactylella oviparasitica), was originally shown to cause a long-term suppression of cyst nematode populations in a field at the University of California Riverside’s Agricultural Operations. Other scientists have detected closely related fungal species in Arkansas and California that were able to parasitize and destroy different important nematodes, including the soybean cyst and root-knot nematodes.

In the current study, the authors showed that similar fungi inhabited sugar beet fields in California, suggesting that a group of naturally occurring fungi, given the right conditions, might be able to dramatically reduce nematode populations in one season. Borneman, Becker, and colleagues detected identical or closely related Hyalorbilia species in 21 of 25 field soils. More importantly, baiting with young female H. schachtii and its host Swiss chard led to an approximately 10,000-fold increase in the population densities of these fungi over one nematode generation. “This research could lead to more frequent planting of sugar beets,” explained James Borneman. “When the population densities of both the nematode and the fungus are above their threshold values, our research suggests that planting sugar beets would lead to the development of an H. schachtii-suppressive soil by the time the sugar beets are harvested.”

“Relatively little is known about the Hyalorbilia spp., yet they appear to occur worldwide as effective parasites of cyst nematodes,” said Borneman. “Nematode-suppressive soils are fascinating examples of natural pathogen control. In this example, the key to defeating the enemy is fungus’ ability to destroy the mothership (the female nematode) before it can release hundreds of eggs into the soil.”

###

To learn more, read “Hyalorbilia oviparasitica Clade Detected in Field Soils Cropped to Sugar Beets and Enriched in the Presence of Heterodera schachtii and a Host Crop” published in the gold open access journal PhytoFrontiers™.

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTOFR-07-20-0005-R

Tags: Agricultural Production/EconomicsAgricultureBiologyEarth ScienceFertilizers/Pest ManagementFood/Food ScienceGeology/SoilMycologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Federal Health Surveys Are Measuring Sexual Orientation, Gender Identity, and Differences in Sex Development

Gene Analysis Uncovers Metal Exposure in Synechococcus

New CHART Guideline Outlines 12 Essential Reporting Items for AI Chatbot Health Advice Studies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.