• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fungal mating: Next weapon against corn aflatoxin?

Bioengineer by Bioengineer
April 3, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ignazio Carbone

It’s not fun when a fungus contaminates crops. Safe native fungi, however, show promise in the fight against toxic fungal contamination.

The fungus Aspergillus flavus can infect several crops, including corn. Some varieties, or strains, of A. flavus produce aflatoxins. Aflatoxin contamination costs U.S. farmers billions of dollars every year. Worse, aflatoxins are harmful for humans and animals.

To reduce aflatoxin contamination of crops, farmers use safe commercial strains of A. flavus. These biocontrol strains do not produce aflatoxins. When applied to crops, the biocontrol strains outcompete the harmful aflatoxin-producing fungi. That reliably reduces levels of aflatoxins in the harvest, transport, and storage stages.

However, commercial strains may not be the only answer. A new study shows that using safe, native strains of A. flavus can be as effective, or even more effective, than commercial strains.

“Using native A. flavus strains could have many advantages,” says Ignazio Carbone, lead author of the new study. “Native strains may be better adapted to the soil type and weather conditions. Therefore, they may perform better in the field compared to non-native strains.”

Carbone is a researcher at North Carolina State University.

Moreover, using commercial strains can have some disadvantages. They usually need to be reapplied each year, at a cost of $20 per acre. Also, the application has to be done aerially or manually. “That can deter farmers from using commercial strains,” Carbone explains.

Native strains, on the other hand, occur naturally in growing areas. They may be more persistent in the soil and not need to be reapplied every year.

Carbone and colleagues tested native strains of A. flavus that produce no or low levels of aflatoxin. They also tested commercial strains. Both reduced crop aflatoxin levels.

Corn for human consumption can have maximum aflatoxin levels of 20 parts per billion, per FDA regulation.

Untreated crops had aflatoxin levels above 35 parts per billion. Native and commercial strains reduced aflatoxin levels to lower than 10 parts per billion.

Unexpectedly, the study also showed that certain combinations of native strains are more effective than commercial strains in reducing aflatoxin levels. That’s because the combinations take advantage of fungal biology: their mating types are compatible, allowing them to reproduce and sustain their population.

When the researchers applied native strains of compatible mating types to the test plots, aflatoxin levels were reduced to less than 2 parts per billion in some cases. This was a better outcome than any commercial strain.

“Our results suggest that using native strains could lead to sustained reductions of aflatoxin levels. Using native strains could be very cost-effective for farmers over the long term,” says Carbone.

Although this study was conducted in North Carolina, Carbone anticipates the approach can work in other areas. A preliminary experiment in Texas also showed that paired native strains reduced aflatoxin levels more efficiently compared to a single commercial strain.

“We need to continue testing this approach in cornfields across different states,” says Carbone. “We also need to monitor aflatoxin levels over several growing seasons.”

Future field trials may include testing current commercial strains plus a compatible mating partner strain. Different combinations of native strains may also be tested, says Carbone.

Can this approach go beyond aflatoxin? Carbone is optimistic. “Fungal toxins pose a continual threat to food safety. Our approach can potentially be applied to other toxin-producing fungi as well.”

###

Read more about Carbone’s research in Agronomy Journal. This work was supported by the Agriculture and Food Research Initiative Competitive Grants Program grant no. 2013-68004-20359 from the USDA National Institute of Food and Agriculture (NIFA).

Media Contact
Susan Fisk
[email protected]

Tags: Agricultural Production/EconomicsAgricultureFertilizers/Pest ManagementFood/Food ScienceMicrobiologyMycology
Share13Tweet8Share2ShareShareShare2

Related Posts

Gender Variations in Pain Response to Cold Stress

Gender Variations in Pain Response to Cold Stress

October 21, 2025
Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

October 20, 2025

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

October 20, 2025

Study Reveals Physical Activity Boosts Total Daily Energy Expenditure

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    120 shares
    Share 48 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Automated Segmentation Method for Infant Cries Developed

CGRP Migraine Therapies: A Clinical Trial Overview

Modeling Wound Healing Through Strain-Induced MSC Differentiation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.