• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fully recyclable packaging materials

Bioengineer by Bioengineer
October 16, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the UPV/EHU-University of the Basque Country and Colorado State University (USA) have developed a class of biorenewable, biodegradable plastics that are an improvement on existing ones and promote the circular economy

IMAGE

Credit: Photo: Nagore Iraola. UPV/EHU


The researchers Haritz Sardón, Ainara Sangroniz and Agustin Etxeberria at the UPV/EHU’s Faculty of Chemistry, together with the researchers Eugene Y.-X. Chen, Jian-Bo Zhu and Xiaoyan Tang at Colorado State University (USA), have designed fully recyclable packaging materials that promote the circular economy for plastic packaging materials where design and production fully comply with requirements pertaining to reuse, repair and recycling. Their study has been published recently in Nature Communications and constitutes a step forward in solving the problem of plastic.

“Containers are needed to ensure the quality and safety of food,” stressed the researcher Haritz Sardón. “Containers protect the product from external agents and the requirements they generally have to meet are good mechanical properties (high ductility) and low permeability to gases and vapours, in other words, good barrier properties. In the packaging sector plastics are the most widely used materials owing to their good physical properties, lightness and low cost. Yet the lack of suitable recycling systems plus their non-degradable nature have led to their build-up in the environment, generating a huge problem.”

In the quest to solve this problem, biodegradable materials have aroused great interest. In the right conditions these polymers degrade to form carbon dioxide, water, biomass, etc. “Poly(lactic acid) is among the most promising biodegradable polymers. Yet its high rigidity plus its low barrier character mean that this material is inadequate for replacing commercial materials,” he explained.

That accounts for the recent growth in the importance of chemical recycling. “Once materials of this type reach the end of their useful service life,” the UPV/EHU researcher went on, “they can be recycled chemically and the original monomer or new monomers can be obtained. The monomer can be re-used to synthesise the material again. That avoids the generation of plastic waste.”

“This work explores two chemically recyclable homopolymers: poly(gamma-butyrolactone), which displays suitable mechanical properties, but high permeability to various gases and vapours. By contrast, poly(trans-hexahydrophthalide) displays the opposite properties: it is very rigid and has low permeability. So we opted to develop copolymers by combining both compounds/monomers. By varying their composition it was possible to synthesise materials with suitable mechanical and barrier properties that are better than biodegradable polymers and similar to commercial materials currently used in packaging,” he concluded.

###

About the authors

Agustin Etxeberria is a tenured UPV/EHU lecturer, Haritz Sardon is an assistant UPV/EHU lecturer and Ainara Sangroniz is a PhD student at the UPV/EHU in the Department of Polymer Science and Technology.

Bibliographical reference

A. Sangroniz, J.-B. Zhu, X. Tang, A. Etxeberria, E.Y.-X. Chen, H. Sardon, Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nature Communications, 2019, 10, 3559. DOI: https://doi.org/10.1038/s41467-019-11525-x

Media Contact
Matxalen Sotillo
[email protected]
34-688-673-770

Original Source

https://www.ehu.eus/en/web/campusa-magazine/-/fully-recyclable-packaging-materia-1

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-11525-x

Tags: BiologyEcology/Environment
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.