• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, July 5, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

“Fuel of evolution” more abundant than previously thought in wild animals

Bioengineer by Bioengineer
May 26, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The raw material for evolution is much more abundant in wild animals than we previously believed, according to new research from The Australian National University (ANU).

Rhesus Macaque

Credit: Timothy Gonsalves

The raw material for evolution is much more abundant in wild animals than we previously believed, according to new research from The Australian National University (ANU).

Darwinian evolution is the process by which natural selection results in genetic changes in traits that favour the survival and reproduction of individuals. The rate at which evolution occurs depends crucially on genetic differences between individuals.

Led by Dr Timothée Bonnet from ANU, an international research team wanted to know how much of this genetic difference, or “fuel of evolution”, exists in wild animal populations. The answer: two to four times more than previously thought.

According to Dr Bonnet, the process of evolution that Darwin described was an incredibly slow one.

“However, since Darwin, researchers have identified many examples of Darwinian evolution occurring in just a few years,” Dr Bonnet said.

“A common example of fast evolution is the peppered moth, which prior to the industrial revolution in the UK was predominantly white. With pollution leaving black soot on trees and buildings, black moths had a survival advantage because it was harder for birds to spot them.

“Because moth colour determined survival probability and was due to genetic differences, the populations in England quickly became dominated by black moths.”

The study is the first time the speed of evolution has been systematically evaluated on a large scale, rather than on an ad hoc basis. The team of 40 researchers from 27 scientific institutions used studies of 19 populations of wild animals from around the world. These included superb fairy-wrens in Australia, spotted hyenas in Tanzania, song sparrows in Canada and red deer in Scotland.

“We needed to know when each individual was born, who they mated with, how many offspring they had, and when they died. Each of these studies ran for an average of 30 years, providing the team with an incredible 2.6 million hours of field data,” Dr Bonnet said.

“We combined this with genetic information on each animal studied to estimate the extent of genetic differences in their ability to reproduce, in each population.

After three years of trawling through reams of data, Dr Bonnet and the team were able to quantify how much species change occurred due to genetic changes caused by natural selection.  

“The method gives us a way to measure the potential speed of current evolution in response to natural selection across all traits in a population. This is something we have not been able to do with previous methods, so being able to see so much potential change came as a surprise to the team,” Dr Bonnet said. 

Professor Loeske Kruuk, also from ANU and now based at the University of Edinburgh in the United Kingdom, said: “This has been a remarkable team effort that was feasible because researchers from around the world were happy to share their data in a large collaboration.

“It also shows the value of long-term studies with detailed monitoring of animal life histories for helping us understand the process of evolution in the wild.”

However, the researchers warn it’s too early to tell whether the actual rate of evolution is getting quicker over time.

“Whether species are adapting faster than before, we don’t know, because we don’t have a baseline. We just know that the recent potential, the amount of ‘fuel’, has been higher than expected, but not necessarily higher than before,” Dr Bonnet said.

According to the researchers, their findings also have implications for predictions of species’ adaptability to environmental change.

“This research has shown us that evolution cannot be discounted as a process which allows species to persist in response to environmental change,” Dr Bonnet said.

Dr Bonnet said that with climate change predicted to increase at an increasing rate, there is no guarantee that these populations will be able to keep up.

“But what we can say is that evolution is a much more significant driver than we previously thought in the adaptability of populations to current environmental changes,” he said.

The research has been published in the journal Science:  https://doi.org/10.1126/science.abk0853  



Journal

Science

Subject of Research

Animals

Article Title

Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals

Article Publication Date

27-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Why don’t we have synthetic blood yet? (video)

Why don’t we have synthetic blood yet? (video)

July 5, 2022
A typical spiny plant Gleditsia microphylla (Fabaceae) native in Asia

Fossils confirm early diversification of spiny plants in central Tibet

July 5, 2022

Eavesdropping on whales in the high Arctic

July 5, 2022

Study explores coevolution of mammals and their lice

July 4, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • Telescopic contact lenses

    39 shares
    Share 16 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryUrogenital SystemVirusVaccineViolence/CriminalsWeather/StormsZoology/Veterinary ScienceUrbanizationVaccinesVehiclesUniversity of WashingtonVirology

Recent Posts

  • Peptide with anti-obesity action is successfully tested in animal trial
  • 8000 kilometers per second: Star with the shortest orbital period around black hole discovered
  • Automation and advanced materials are the “dream team”
  • Experts warn about the need for seeking novel treatments for parasitic worm diseases
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....