• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

FSU study aids fight against HIV, hepatitis B

Bioengineer by Bioengineer
January 8, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Colin Hackley/Florida State University College of Medicine


TALLAHASSEE, Fla. — A discovery by Florida State University College of Medicine researchers is expected to open the door for new and more potent treatment options for many of the more than 36 million people worldwide infected with the HIV virus and for others chronically ill with hepatitis B.

Their work has established for the first time the mechanism responsible for how two widely used antiviral drugs inhibit viruses.

In a paper published by Communications Biology, an open-access journal from Nature Research, Professor Zucai Suo and colleagues also provide the key to understanding how a single HIV-1 mutation can inactivate the anti-HIV drugs emtricitabine and lamivudine. Those drugs are worth billions in annual sales for the companies that make them, and the frequency of patients who develop resistance creates serious and dangerous obstacles to controlling the disease.

Emtricitabine also is approved for use in patients with hepatitis B, which afflicts 270 million people worldwide, according to the World Health Organization.

The paper suggests new pathways for developing drugs able to avoid specific virus mutations that can render these two blockbuster L-nucleoside drug treatments ineffective for many patients.

It’s not unusual for patients undergoing treatment to develop a resistance to their prescribed anti-HIV medications, leaving physicians with three options: adjust the treatment regimen, temporarily interrupt therapy or continue with an only partially effective regimen.

For patients who have failed their first treatment regimen, or even a second, doctors typically try to salvage the current course of treatment by adjusting the combination of drugs. But for patients who have failed multiple treatment regimens, there are limited options to suppress the incurable virus.

The number of drug choices available when one combination fails is limited. More than a million of those infected with HIV live in the U.S.

“In our paper, we suggest new chemical possibilities for more potent L-nucleoside analog drugs, which may possess different drug-resistance mutation profiles from the most widely used current anti-HIV drugs,” said Suo, the study’s co-lead author, and an Eminent Professor and the Dorian and John Blackmon Chair in Biomedical Science at the FSU College of Medicine. Eric Lansdon of Gilead Sciences Inc. is the co-lead author.

“Right now, there are a limited number of FDA-approved drugs available,” Suo said. “New drugs need to be developed if doctors are to have other options when treating so many patients who may have developed resistance to most of the FDA-approved anti-HIV drugs.”

The drugs remain highly effective in keeping the disease under control for most patients, but some patients develop a resistance due to mutations within the HIV virus.

Suo’s paper explains how the class of HIV drugs known as L-nucleoside reverse transcriptase inhibitors (L-NRTIs) work. L-NRTIs block an enzyme that HIV needs to replicate, but they were discovered through blind trials. Important details about the underlying mechanism triggering L-NRTIs have remained a mystery, as well as a source of controversy among the scientists who study them.

“The enzyme has a unique pocket and supposedly recognizes NRTIs, but not their structural mirror images — L-NRTIs,” said Suo, who grew curious about the mechanism behind L-NRTI drugs as a graduate student. He’s been motivated since then to understand and explain the mechanism involved, which he does in his paper — one of six he has published involving L-NRTI research.

Suo’s current paper also explains how a mutation found in some patient populations leads to developing resistance to antiviral L-NRTI drugs.

“Patients, HIV scientists and medical doctors all will benefit from this,” Suo said. “HIV scientists and drug companies will now know how it works and will be able to design better drugs in the same class of medications. They will be able to build on the mechanism described in this paper to make slight adjustments for better and more powerful treatment options.”

###

This work was supported by Gilead Sciences Inc. and a grant from the National Science Foundation.

Media Contact
Doug Carlson
[email protected]
850-645-1255

Original Source

https://news.fsu.edu/news/health-medicine/2020/01/08/fsu-study-aids-fight-against-hiv-hepatitis-b/

Related Journal Article

http://dx.doi.org/10.1038/s42003-019-0706-x

Tags: AIDS/HIVMedicine/Health
Share14Tweet9Share3ShareShareShare2

Related Posts

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

September 12, 2025

Choosing Wisely: A Challenge in Clinical Reasoning

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.