• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

FSU researchers investigate material properties for longer-lasting, more efficient solar cells

Bioengineer by Bioengineer
October 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: FSU Photography Services

The designers of solar cells know their creations must contend with a wide range of temperatures and all sorts of weather conditions — conditions that can impact their efficiency and useful lifetime.

Florida State University Assistant Professor of Chemistry and Biochemistry Lea Nienhaus and former FSU postdoctoral researcher Sarah Wieghold are helping to understand the fundamental processes in a material known as perovskites, work that could lead to more efficient solar cells that also do a better job of resisting degradation. They found that small tweaks to the chemical makeup of the materials as well as the magnitude of the electrical field it is exposed to can greatly affect the overall material stability.

Their latest work is published in a pair of studies in Journal of Materials Chemistry C and Journal of Applied Physics .

Their research is focused on improving the potential of perovskites, a material with a crystal structure based on positively charged lead ions known as cations and negatively charged halide anions. In a cubic perovskite crystal structure, the octahedra formed by the lead and halide ions are surrounded by additional positively charged cations.

The first perovskite solar cells, which were developed in 2006, had a solar energy power conversion efficiency of about 3 percent, but cells developed in 2020 have a power conversion efficiency of more than 25 percent. That rapid increase in efficiency makes them a promising material for further research, but they have drawbacks for commercial viability, such as a tendency to degrade quickly.

“How can we make perovskites more stable under real-world conditions in which they’ll be used?” Nienhaus said. “What is causing the degradation? That’s what we’re trying to understand. Perovskites that don’t degrade quickly could be a valuable tool for obtaining more energy from solar cells.”

Perovskites are a so-called “soft material,” despite the ionic bonds of the crystal lattice that make up their structure. The halides or cations in the material can move through that lattice, which may increase their rate of degradation, resulting in a lack of long-term stability.

In the Journal of Materials Chemistry C paper, the researchers investigated the combined influence of light and elevated temperature on the performance of mixed-cation mixed-halide perovskites.

They found that adding a small amount of the element cesium to the perovskite film increases the stability of the material under light and elevated temperatures. Adding rubidium, on the other hand, led to worse performance.

“We found that depending on the choice of the cation, two pathways of degradation can be observed in these materials, which we then correlated to a decrease in performance,” said Wieghold, now an assistant scientist at the Center for Nanoscale Materials and the Advanced Photon Source at Argonne National Laboratory. “We also showed that the addition of cesium increased the film stability under our testing conditions, which are very promising results.”

They also found that a decrease in film performance for the less stable perovskite mixtures was correlated with the formation of the compound lead bromide/iodide and an increase in electron-phonon interactions. The formation of lead bromide/iodide is due to the unwanted degradation mechanism, which needs to be avoided to achieve long-term stability and performance of these perovskite solar cells.

In the Journal of Applied Physics paper, they explored the link between voltage and the performance of perovskite materials. This showed that the ion movement in the material changes the underlying electrical response, which will be a critical factor in the photovoltaic performance.

“Perovskites present a great opportunity for the future of solar cells, and it’s exciting to help move this science forward,” Nienhaus said.

###

Other researchers who contributed to the Journal of Materials Chemistry C paper include FSU graduate student Alexander Bieber, FSU doctoral candidate Masoud Mardani, and Theo Siegrist, professor of chemical and biomedical engineering at the FAMU-FSU College of Engineering. Additional contributors to the Journal of Applied Physics paper include staff scientists Nozomi Shirato of the Center for Nanoscale Materials and Volker Rose of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory.

This research was supported by start-up funds from Florida State University and funding from the U. S. Department of Energy.

Media Contact
Bill Wellock
[email protected]

Original Source

https://news.fsu.edu/news/science-technology/2020/10/26/fsu-researchers-investigate-material-properties-for-longer-lasting-more-efficient-solar-cells/

Related Journal Article

http://dx.doi.org/10.1039/D0TC02103B

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

October 6, 2025
blank

Transforming Biogas Waste into an Effective Solution for Ammonium Pollution Cleanup

October 6, 2025

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Insights into Endothelial Cell Death in Sepsis

LVSG Effects on LES and GERD: Meta-Analysis

PRDM6: A Key Protector Against PCOS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.