• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

From viruses to social bots, researchers unearth the structure of attacked networks

Bioengineer by Bioengineer
May 29, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new statistical machine learning framework gleans the invisible and unobservable structure of any attacked network

The human body’s mechanisms are marvelous, yet they haven’t given up all their secrets. In order to truly conquer human disease, it is crucial to understand what happens at the most elementary level.

Essential functions of the cell are carried out by protein molecules, which interact with each other in varying complexity. When a virus enters the body, it disrupts their interactions and manipulates them for its own replication. This is the foundation of genetic diseases, and it is of great interest to understand how viruses operate.

Adversaries like viruses inspired Paul Bogdan, associate professor in the Ming Hsieh Department of Electrical and Computer Engineering, and recent Ph.D. graduate, Yuankun Xue, from USC’s Cyber Physical Systems Group, to determine how exactly they interact with proteins in the human body. “We tried to reproduce this problem using a mathematical model,” said Bogdan. Their groundbreaking statistical machine learning research on “Reconstructing missing complex networks against adversarial interventions,” was published in Nature Communications journal earlier this April.

Xue, who earned his Ph.D. in electrical and computer engineering last year with the 2018 Best Dissertation Award, said: “Understanding the invisible networks of critical proteins and genes is challenging, and extremely important to design new medicines or gene therapies against viruses and even diseases like cancer.”

The ‘protein interaction network’ models each protein as a ‘node.’ If two proteins interact, there is an ‘edge’ connecting them. Xue explained, “An attack by a virus is analogous to removing certain nodes and links in this network.” Consequently, the original network is no longer observable.

“Some networks are highly dynamic. The speed at which they change may be extremely fast or slow,” Bogdan said. “We may not have sensors to get accurate measurements. Part of the network cannot be observed and hence becomes invisible.”

To trace the effect of a viral attack, Bogdan and Xue needed to reconstruct the original network by finding a reliable estimate of the invisible part, which was no easy task. Said Bogdan: “The challenge is that you don’t see the links, you don’t see the nodes, and you don’t know the behavior of the virus.” To solve this problem, Xue added, “The trick is to rely on a statistical machine learning framework to trace all possibilities and find the most probable estimate.”

In sharp contrast to prior research, the lab’s novel contribution is that they actively incorporate the influence and causality of the attack, or ‘adversarial intervention’, into their learning algorithm rather than treat it as a random sampling process. Bogdan explained, “Its real power lies in its generality – it can work with any type of attack and network model.”

Due to the generality of their proposed framework, their research has far-reaching applications to any network reconstruction problem involving adversarial attack, in diverse fields such as ecology, social science, neuroscience, and network security. Their paper has also demonstrated its capability to determine the influence of trolls and bots on social media users.

Bogdan plans to extend their work by experimenting with a range of attack models, more complex and varied datasets, and larger network sizes to understand their effect on the reconstructed network.

###

Media Contact
Amy Blumenthal
[email protected]
http://dx.doi.org/10.1038/s41467-019-09774-x

Tags: AIDS/HIVAlgorithms/ModelscancerComputer ScienceEpidemiologyGene TherapyMathematics/StatisticsMedicine/HealthRobotry/Artificial IntelligenceSystem Security/Hackers
Share12Tweet7Share2ShareShareShare1

Related Posts

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025
blank

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.