• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 2, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

From crab studies, a broader approach to identifying brain cells

Bioengineer by Bioengineer
December 31, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Garcia


WOODS HOLE, Mass. – A longstanding goal in neuroscience is to classify the brain’s many cells into discrete categories according to their function. Such categories can help researchers understand the complex neural circuits that ultimately give rise to behavior and disease. However, there’s little consensus about what metrics should define a cell’s identity.

In a new study, a collaboration born in part from the Neural Systems & Behavior (NS&B) course at the Marine Biological Laboratory tests the notion that a cell’s identity can be described solely by the genes it expresses. The study, published in Proceedings of the National Academy of Sciences, advocates a more “multimodal” approach to defining cell identity.

By using popular and powerful RNA sequencing techniques, researchers can take a snapshot of all the genes that are currently turned on inside a cell. But it’s becoming increasingly clear that such strategies may be limited in their ability to give a complete picture of cell identity, or represent changes over time.

Along with their collaborators, NS&B instructors Hans Hofmann, David Schulz, and Eve Marder put two popular RNA-based methods to the test: single-cell RNA sequencing and quantitative RT-PCR. They applied these techniques to two well-studied nerve clusters in the crab Cancer borealis — the stomatogastric and cardiac ganglia –which allowed them to compare the results from the RNA-based approaches to other known metrics of cell identity.

They found that the cell identities generated by the complete RNA profiles, or “transcriptomes,” did not match the existing cell identities they had compiled over years of observation. In fact, categorizing cells based on their entire transcriptome ultimately yielded “scrambled” identities.

However, as the researchers further refined their selection of key genes to input into their analysis, the RNA profiles began to more closely resemble the identities gleaned from other attributes, such as innervation patterns, morphology, and physiology. Thus, this multimodal approach has the potential to reveal a more accurate portrayal of cell identity than RNA sequencing alone.

According to Hofmann, most studies don’t bother to validate transcriptomic data with other metrics of cell identity like morphology and physiology. “Classification and characterization of cell types is often performed within the context of specific studies, and not based on a systematic approach,” he says. “We really have to collect a lot of additional data, even across species, to come up with a robust taxonomy of cell types.”

“RNA sequencing is tremendously promising and powerful, but this study provides a valuable and necessary check,” Schulz adds. “Rather than relying entirely on analytics applied blindly to cell type, whenever possible it’s important to consider multiple modalities of information as well.”

The trick, Hofmann and Schulz agree, is knowing which data are indicative of cell identity, and which are simply noise that will interfere with accurate classification.

Researchers must also eventually agree on a definition of “cell identity.” Drawing firm boundaries between cell types is useful in many ways, but may ultimately be problematic.

“Soon,” Schulz says, “we’ll start to see the limitations of trying to impose very discrete categories on the spectrum of cell types within and across individuals.”

###

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact
Gina Hebert
[email protected]
508-289-7423

Original Source

https://www.mbl.edu/blog/from-crab-studies-a-broader-approach-to-identifying-brain-cells/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1911413116

Tags: BiologyCell BiologyMedicine/Healthneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Assessing Hong Kong Residents’ Satisfaction in Mainland Healthcare

February 1, 2026

Revolutionary AI Model Diagnoses Sarcopenia Accurately

February 1, 2026

Expanded lymph node examination crucial for precise assessment of cancer spread in lung cancer patients

February 1, 2026

Aortic Hemiarch Reconstruction Matches Complex Arch Surgery in Safety for Older Adults with Acute Dissection

February 1, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Hong Kong Residents’ Satisfaction in Mainland Healthcare

Revolutionary AI Model Diagnoses Sarcopenia Accurately

New Tool Reveals the Vast Spread of Fraudulent Research Impacting Cancer Science

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.