• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Freeze-dried soil is more suitable for studying soil reactive nitrogen gas emissions

Bioengineer by Bioengineer
March 5, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dianming Wu


Earth’s atmosphere and climate change are strongly affected by gas exchange between land and atmosphere. Reactive nitrogen (Nr) gas emissions from soils, e.g., nitrous acid (HONO) and nitric oxide (NO), play a significant role in atmospheric chemistry and also constitute a key process of the global nitrogen (N) cycle.

To understand the underlying mechanisms of soil Nr emissions, air-dried or oven-dried soils are commonly used in the laboratory. To date, few studies have compared the effects of different drying methods on soil Nr gas fluxes and N fractions.

In a paper recently published in Atmospheric and Oceanic Science Letters, Dr. Dianming Wu, from the School of Geographic Sciences, East China Normal University, and his coauthors, try to identify the best approach to treat soil samples.

“We evaluated soil water content, pH, (in)organic N content, and Nr gas fluxes of air-dried, freeze-dried, oven-dried, and fresh soils from different land-use types,” says Dr. Wu.

According to this study, all drying methods increased the soil ammonium, nitrate, and dissolved organic N contents compared with fresh soil. However, freeze-dried soil had the closest soil pH value, the maximum HONO and NO flux and total emissions during a full wetting-drying cycle with fresh soil, while air-drying and oven-drying significantly increased Nr gas fluxes. Therefore, global soil Nr gas emissions might be overestimated if air- and oven-dried soil are used.

The study concludes that all drying methods should be considered for use in studies on the land-atmosphere interface and biogeochemical N cycling, whereas the freeze-drying method might be better for studies involving the measurement of soil Nr gas fluxes.

“The important implication of the finding is that we need to carefully evaluate the previous understanding of the mechanism of biogeochemical nitrogen cycling based on different drying methods,” concludes Dr. Wu.

###

Media Contact
Ms. Zheng Lin
[email protected]
86-108-299-5053

Original Source

http://159.226.119.58/aosl/EN/news/news32.shtml

Related Journal Article

http://dx.doi.org/10.1080/16742834.2020.1733388

Tags: AgricultureAtmospheric ScienceClimate ChangePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

August 14, 2025
Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

August 14, 2025

Amyloid-Based Antiphage Defense in E. coli Uncovered

August 14, 2025

Critically Endangered Plains-Wanderer Discovered in Uncharted Habitat

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Tissue Macrophages to Fight Aging, Cancer

SwRI Unveils GAMES: A Novel Chemistry LLM to Accelerate Drug Discovery

Optimizing C3N5 Nanosheets for Superior Supercapacitor Electrodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.