• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Genetics

Formaldehyde damages proteins, not just DNA

Bioengineer by Bioengineer
October 1, 2016
in Genetics
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The capacity of formaldehyde, a chemical frequently used in manufactured goods such as automotive parts and wood products, to damage DNA, interfere with cell replication and cause cancer inspired new federal regulations this summer. But a new study in the American Journal of Pathology finds that the substance may pose a broader threat to health than previously thought by injuring cells in another way.

pro

“We think formaldehyde is a much more dangerous toxicant in the sense that it is not only damaging DNA but there is also extensive damage to proteins,” said corresponding author Anatoly Zhitkovich, Professor of Pathology and Laboratory Medicine in the Warren Alpert Medical School of Brown University. “On one hand, damage to proteins in the nucleus could impair the stress responses to and repair of DNA damage, and on the other hand accumulation of damaged proteins could contribute directly to malfunctioning and killing of cells.”

The findings may substantiate questions about whether formaldehyde adversely affects the nervous system, as has been seen in some animal studies, Zhitkovich said.

Protein problems

In several experiments described in the new paper, Zhitkovich’s team at Brown showed that exposure of three types of human lung cells to formaldehyde set off a sequence of damage and cellular responses similar to what happens when cells are exposed to excessive heat. They saw tell-tale indications of widespread accumulation of damaged proteins. These indications were the appearance of a specific set of protective processes that try to clean up the damaged proteins before their buildup could kill the cells.

Zhitkovich first got the idea that formaldehyde might damage proteins when his laboratory was studying how cells respond to formaldehyde’s DNA damage. Their data showed that a key anticancer protein in this response was reduced at high doses when its presence should be scaling up to meet the increasing formaldehyde exposure.

In the new study Zhitkovich, lead author Sara Ortega-Atienza and co-authors Blazej Rubis and Caitlin McCarthy therefore looked for signs of protein damage and saw them clearly. They observed that after brief formaldehyde exposures, cells exhibited a massive polyubiquitination, a process of marking damaged proteins for disposal, lest they accumulate. Shortly after the polyubiquitination process began, they then observed the heat shock response as a new set of proteins joined the massive cleanup effort.

Ultimately many of the cells died, despite the activation of cell’s defense responses. In an experiment where they purposely disabled one of the key heat shock response proteins, cells were even more likely to die.

Neither the polyubiquitination response nor the heat shock response occurred in control cells that did not have any contact with formaldehyde. Meanwhile, the scientists also subjected cells to substances known to damage DNA but not proteins, and found that this didn’t unleash the polyubiquitination or heat shock responses. That suggests that those reactions were not responses to formaldehyde’s DNA damage.

The next set of questions

Zhitkovich said the findings might explain why formaldehyde may be toxic to the nervous system. Neurons don’t divide or replicate DNA, so they aren’t as vulnerable to the kind of damage formaldehyde does to DNA. But they are especially vulnerable to accumulations of damaged and misfolded proteins — that’s what happens in Alzheimer’s and some other disease, for example — and that’s exactly what Zhitkovich’s team has found formaldehyde causes in cells. Animal studies, he noted, have shown that formaldehyde exposure undermines brain functions such as memory and learning.

To directly test this hypothesis, his group has begun formaldehyde exposure experiments with human neurons in the lab, he said.

Zhitkovich’s team is also investigating whether formaldehyde damages particular types of proteins or whether it is toxic to them across the board.

And as a member of Brown’s community of researchers on the biology of aging, he is also interested in studying whether long-term, low-level exposure to formaldehyde — which cells actually make themselves — could lead to a deleterious buildup of damaged proteins as cells get older.

For now, though, this study has already broken new ground by showing that formaldehyde is not just a threat to DNA, Zhitkovich said.

“Cells are dealing with two injuries instead of just one,” he said.

Web Source: Brown University.

Journal Reference:

Sara Ortega-Atienza, Blazej Rubis, Caitlin McCarthy, Anatoly Zhitkovich. Formaldehyde Is a Potent Proteotoxic Stressor Causing Rapid Heat Shock Factor Protein 1 Activation and Lys48-Linked Polyubiquitination of Proteins. The American Journal of Pathology, 2016; DOI: 10.1016/j.ajpath.2016.06.022

The post Formaldehyde damages proteins, not just DNA appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Cataloging nature’s hidden arsenal: Viruses that infect bacteria

December 10, 2020

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020

£1m step closer to understanding genetic diseases

December 9, 2020
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.