• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, August 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

For viral predators of bacteria, sensitivity can be contagious

Bioengineer by Bioengineer
January 10, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: (Hebrew University / Cell)

Bacteriophages (phages) are probably the most abundant entities in nature, often exceeding bacterial densities by an order of magnitude. As viral predators of bacteria, phages have a major impact on bacterial communities by reducing some bacteria and enabling others to flourish. Phages also occasionally package host DNA and deliver it to other bacteria, in a process known as horizontal gene transfer (HGT).

The biology of phage infection has been extensively studied since the beginning of the 20th century. However, the fate of phages in complex bacterial communities resembling their natural ecosystem has not been studied at the cellular level. To investigate the biology of phage infection in complex bacterial communities, researchers followed phage dynamics in communities harboring phage-resistant (R) and phage-sensitive (S) bacteria, a common scenario in nature.

Now, in new research in the January 12 edition of Cell, researchers at the Hebrew University of Jerusalem's Faculty of Medicine provide the first demonstration of a mechanism by which bacteria entirely resistant to a given phage become susceptible to it upon co-incubation with sensitive bacteria.

The researchers show how phage-sensitive bacteria harboring phage receptor can deliver the receptor to nearby phage-resistant cells that lack the phage receptor, via a molecular transfer they call "acquisition of sensitivity" (ASEN). This process involves a molecular exchange driven by membrane vesicles (MVs), in which phage-resistant cells transiently gain phage attachment molecules released from neighboring phage-sensitive cells. By exploiting this novel delivery system, phages can invade bacteria lacking their receptor.

The researchers further posit that this mechanism enables phages to expand their host range and deliver DNA into new species, thus facilitating the attachment of phages to non-host species, providing an as-yet unexplored route for horizontal gene transfer (HGT).

"In the present study, we show for the first time how bacteria entirely resistant to a given phage become susceptible upon co-incubation with sensitive bacteria. Phage invasion into resistant cells could have a major impact on transfer of antibiotic resistance and virulence genes among bacteria. This aspect should be carefully considered when employing phage therapy, as phage infection of a given species may result in gene transmission into neighboring bacteria resistant to the phage," said Prof. Sigal Ben-Yehuda, who led the research at the Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, in the Hebrew University's Faculty of Medicine.

"Our work indicates that, similarly to the remarkable arsenal of entry and spreading strategies employed by viruses, phages utilize alternative, as yet unidentified spreading mechanisms, which could expedite the infection process and promote phage spread within cells of the same and different species," said the PhD student Elhanan Tzipilevich, who carried out this research.

###

An accompanying video can be seen at https://youtu.be/YQLvTBCsOtM.

The Institute for Medical Research-Israel Canada (IMRIC), in the Hebrew University of Jerusalem's Faculty of Medicine, is one of the most innovative biomedical research organizations in Israel and worldwide. IMRIC brings together brilliant scientific minds to find solutions to the world's most serious medical problems, through a multidisciplinary approach to biomedical research. More information at http://imric.org.

Media Contact

Dov Smith
[email protected]
972-258-82844
@HebrewU

http://new.huji.ac.il/en

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment

UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment

August 19, 2022
A new predictive network model for belief change

Study: New model for predicting belief change

August 19, 2022

Rice, NASA extend Space Act Agreement

August 19, 2022

How do you take a better image of atom clouds? Mirrors – lots of mirrors

August 19, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccineVirusUrbanizationZoology/Veterinary ScienceVirologyViolence/CriminalsVaccinesUrogenital SystemVehiclesUniversity of WashingtonWeaponryWeather/Storms

Recent Posts

  • UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment
  • Study: New model for predicting belief change
  • Rice, NASA extend Space Act Agreement
  • How do you take a better image of atom clouds? Mirrors – lots of mirrors
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In