• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

For this emergent class of materials, ‘solutions are the problem’

Bioengineer by Bioengineer
December 18, 2023
in Chemistry
Reading Time: 5 mins read
0
COFs
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HOUSTON – (Dec. 18, 2023) – Rice University materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

COFs

Credit: (Photo by Gustavo Raskosky/Rice University)

HOUSTON – (Dec. 18, 2023) – Rice University materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

“What makes these structures so special is that they are polymers but they arrange themselves in an ordered, repeating structure that makes it a crystal,” said Jeremy Daum, a Rice doctoral student and lead author of a study published in ACS Nano. “These structures look a bit like chicken wire ⎯ they’re hexagonal lattices that repeat themselves on a two-dimensional plane, and then they stack on top of themselves, and that’s how you get a layered 2D material.”

Alec Ajnsztajn, a Rice doctoral alumnus and the study’s other lead author, said the synthesis technique makes it possible to produce ordered 2D crystalline COFs in record time using vapor deposition.

“A lot of times when you make COFs through solution processing, there’s no alignment on the film,” Ajnsztajn said. “This synthesis technique allows us to control the sheet orientation, ensuring that pores are aligned, which is what you want if you’re creating a membrane.”

The ability to control pore size is useful in separators, where COFs could serve as membranes for desalination and potentially help replace energy intensive processes like distillation. In electronics, COFs could be used as battery separators and organic transistors.

“COFs have the potential to be useful in a variety of catalytic processes ⎯ you might, for instance, use COFs to break down carbon dioxide into useful chemicals like ethylene and formic acid,” Daum said.

One of the hurdles preventing COFs from being used more widely is that production methods involving solution processing are lengthier and more difficult to accommodate in industrial settings.

“It can take three to five days of reaction time to produce the powders for the solutions needed to generate COFs,” Ajnsztajn said. “Our method is much faster. After months of optimizing, we managed to produce high-quality films in just 20 minutes or less.”

To make sure their films exhibited the right molecular structure, Daum and Ajnsztajn went to the Argonne National Laboratory, where they analyzed their samples using the Advanced Photon Source, working continuously in shifts for 71 hours.

“We knew it was ‘go’ time, but we were so happy with the results,” Daum said. “We had to go to a national lab because this technique was the only way to measure the quality of our films and ensure we’d taken the right measures to optimize them.”

Microscopy studies provided insight into how COF crystals grow and helped show that temperatures of up to 340 degrees Celsius (~644 Fahrenheit) could be used to synthesize organic molecules.

“While working on this project, we’ve heard from many people who thought that heating organic molecules up to such high temperatures would prevent the right reactions from occurring, but what we found is that chemical vapor deposition is, in fact, a viable way to create organic materials,” Ajnsztajn said.

To make the COFs, Daum and Ajnsztajn built an ad-hoc reactor from discarded lab equipment parts and other inexpensive, readily available materials.

“This entire process was something that was very cheap to assemble,” Daum said. “Establishing a robust, scalable process of producing a variety of COF films will hopefully allow for the better application of COFs in catalysis, energy storage, membranes and more.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering, professor and chair of materials science and nanoengineering and professor of chemistry and of chemical and biomolecular engineering, and Rafael Verduzco, professor of chemical and biomolecular engineering and of materials science and nanoengineering, are corresponding authors on the study.

The research was supported by the Welch Foundation (C-2124), the National Science Foundation (2247729, 1842494), the U.S. Air Force Office of Scientific Research and Clarkson Aerospace Corporation (FA9550-21-1-0460), U.S. Air Force Research Laboratories and UES (S-119-005-003, Award number 116000, Project name G10000097).

-30-

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Peer-reviewed paper:

“Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition” | ACS Nano | DOI: 10.1021/acsnano.3c06142

Authors: Jeremy Daum, Alec Ajnsztajn, Sathvik Iyengar, Jacob Lowenstein, Soumyabrata Roy, Guan-hui Gao, Esther Tsai, Pulickel Ajayan and Rafael Verduzco

https://pubs.acs.org/doi/full/10.1021/acsnano.3c06142

Image downloads:

https://news-network.rice.edu/news/files/2023/12/231115_re-ACS-Nano-COFs_Gustavo-14.jpg
CAPTION: Rice University materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs). (Photo by Gustavo Raskosky/Rice University)

https://news-network.rice.edu/news/files/2023/12/231115_re-ACS-Nano-COFs_Gustavo-3.jpg
CAPTION: COFs are a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery. (Photo by Gustavo Raskosky/Rice University)

https://news-network.rice.edu/news/files/2023/12/231115_re-ACS-Nano-COFs_Gustavo-8.jpg
CAPTION: Alec Ajnsztajn (left) and Jeremy Daum are lead co-authors on a study published in ACS Nano. (Photo by Gustavo Raskosky/Rice University)

Related stories:

NSF backs bid to speed environmental tests for viruses:
https://news.rice.edu/news/2022/nsf-backs-bid-speed-environmental-tests-viruses

Ajayan elected foreign fellow of Indian National Science Academy:
https://msne.rice.edu/news/ajayan-elected-foreign-fellow-indian-national-science-academy

Copper-based catalysts efficiently turn carbon dioxide into methane:
https://news.rice.edu/news/2023/copper-based-catalysts-efficiently-turn-carbon-dioxide-methane
 

Links:

Ajayan Research Group:https://ajayan.rice.edu/

Polymer Engineering Laboratory: https://verduzcolab.blogs.rice.edu/

Department of Chemistry: https://chemistry.rice.edu/

Department of Materials Science and Nanoengineering: https://msne.rice.edu/

Department of Chemical and Biomolecular Engineering: https://chbe.rice.edu/

George R. Brown School of Engineering: https://engineering.rice.edu/

Wiess School of Natural Sciences: https://naturalsciences.rice.edu/

About Rice:

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of architecture, business, continuing studies, engineering, humanities, music, natural sciences and social sciences and is home to the Baker Institute for Public Policy. With 4,574 undergraduates and 3,982 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction, No. 2 for best-run colleges and No. 12 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.



Journal

ACS Nano

DOI

10.1021/acsnano.3c06142

Method of Research

Experimental study

Article Title

Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition

Article Publication Date

23-Oct-2023

COI Statement

A patent application related to COF synthesis is pending.

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gal-9 on Leukemia Stem Cells Predicts Prognosis

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.