• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

For this beetle, ‘date night’ comes every other day

Bioengineer by Bioengineer
January 18, 2024
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Life on Earth runs on a 24-hour cycle as the planet turns. Animals and plants have built-in circadian clocks that synchronize metabolism and behavior to this daily cycle. But one beetle is out of sync with the rest of nature.

For This Beetle, ‘Date Night’ Comes Every Other Day

Credit: Holotrichia parallela observed in Hong Kong by ltong__, licensed under http://creativecommons.org/licenses/by-nc/4.0/. (Via https://www.gbif.org/occurrence/4416893806.)

Life on Earth runs on a 24-hour cycle as the planet turns. Animals and plants have built-in circadian clocks that synchronize metabolism and behavior to this daily cycle. But one beetle is out of sync with the rest of nature.

A new study, published Jan. 18 in Current Biology, looks at a beetle with a unique, 48-hour cycle. The large black chafer beetle, Holotrichia parallela, is an agricultural pest in Asia. Every other night, the female beetles emerge from the soil, climb up a host plant and release pheromones to attract males.

This mating behavior by the female beetles is under the control of a 48-hour, or “circa-bi-dian” clock, for reasons that remain mysterious. A team led by Walter Leal, professor of molecular and cellular biology at the University of California, Davis, and Jiao Yin at the Chinese Academy of Agricultural Sciences, Beijing, wanted to know if the male beetles’ ability to smell the females was also on a 48-hour clock.

Leal’s lab at UC Davis studies chemical sensing in insects. Many insects, from moths to mosquitoes, use scent to attract a mate. Insects “smell” with their antennae, which contain specialized receptors that react to specific chemicals wafting through the air.

Following pheromones

The team’s first step was to identify the gene in large black chafers for the receptor that reacts to the female pheromone, which has the seductive name L-isoleucine methyl ester, or LIME. The researchers initially cloned 14 candidate genes. A series of experiments led them to a gene called HparOR14 as the sex pheromone receptor — incidentally, the first such to be identified in a beetle species.

Having identified the receptor gene, they could measure levels of HparOR14 gene transcripts throughout the beetle’s life and its activity over 48 hours. They found that on “date night,” when females would be climbing plants to release scent, HparOR14 transcription was higher after dark. But receptor activity was low on the alternating days. (In a control experiment, the response to a chemical signal from damaged leaves, indicating food for the beetle, remained constant day after day.)

The results show that male chafer’s ability to detect the female sex pheromone does run on a 48-hour, circabidian cycle that matches the female mating behavior.

Why, and how, large black chafers have these 48-hour cycles is unknown. Circadian, 24-hour clocks are synchronized by cues that change over a 24-hour cycle — the most obvious being the rising or setting of the sun. But there are no 48-hour cues in nature, so exactly how the circabidian cycles of large black chafers are set — including how males and females can synchronize with each other, so they all know which night is date night — is a mystery still to be solved.

“Twenty-four hour rhythms in physiology and behavior are commonly observed in organisms from bacteria to humans, but observations of 48-hour rhythms in nature are rare,” said Professor Joanna Chiu, chair of the Department of Entomology and Nematology at UC Davis and an expert on circadian rhythms, who was not involved in the work. “This elegant study by Professor Leal and his collaborators has provided us with an in-depth description of how the circabidian rhythm of pheromone detection in this beetle is generated.”

Additional authors on the study are: Yinliang Wang, Huanhuan Dong, Yafei Qu, Jianhui Qin, Kebin Li, Yazhong Cao and Shuai Zhang, Chinese Academy of Agricultural Sciences, Beijing; Yuxin Zhou and Bingzhong Ren, Northeast Normal University, Changchun, China; and Chen Luo, Beijing Academy of Agriculture and Forestry Sciences. The work was supported by the National Key R&D Foundation of China; National Natural Science Foundation, China; and the Natural Science Foundation of Beijing.



Journal

Current Biology

DOI

10.1016/j.cub.2023.12.057

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Circabidian rhythm of sex pheromone reception in a scarab beetle

Article Publication Date

18-Jan-2024

COI Statement

None declared.

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal BMI’s Impact on Offspring Metabolism Revealed

Flowering Plant Gene Regulation: Recruitment, Rewiring, Conservation

Triggering Bacterial Calcification to Combat MRSA

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.