• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, May 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Food withdrawal results in stabilization of important tumor suppressor

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tumor suppressors stop healthy cells from becoming cancerous. Researchers from Charité – Universitätsmedizin Berlin, the Medical University of Graz and the German Institute of Human Nutrition in Potsdam-Rehbruecke have found that p53, one of the most important tumor suppressors, accumulates in liver after food withdrawal. They also show that p53 in liver plays a crucial role in the body's metabolic adaptation to starvation. These findings may provide the foundation for the development of new treatment options for patients with metabolic or oncologic disorders. Results of this study have been published in The FASEB Journal*.

Previously described as the 'guardian of the genome' and voted 'Molecule of the Year' in 1993, p53 is one of the most important proteins regulating cell growth and a major focus for oncology research. It is a protein that has the ability to interrupt the cell cycle and block the division of diseased cells. In order to better understand its physiological regulation, the researchers around Prof. Dr. Michael Schupp from Charité's Institute of Pharmacology studied the regulation and function of p53 in normal, healthy cells. After withholding food from mice for several hours, the researchers were able to show that p53 protein accumulates in the liver. In order to determine which type of liver cells cause this accumulation, the researchers repeated the experiment using cultured hepatocytes. They found that the starvation-induced accumulation of p53 was indeed detectable in hepatocytes, irrespective of whether these cells were of mouse or human origin.

"Our data also suggest that the accumulation of p53 is mediated by a cellular energy sensor, and that it is crucial for the metabolic changes associated with starvation," explains Prof. Michael Schupp. The researchers were able to show that mice with an acute inactivation of the p53 gene in liver had difficulties in adapting their metabolisms to starvation. "Food intake seems crucial in determining the protein levels of p53 in liver, and p53 also plays an important role in normal liver metabolism," says Prof. Schupp. The researchers are planning to study whether their observations are limited to liver cells, or whether this p53 accumulation also occurs in other tissues and organs. Prof. Schupp concludes: "It would be interesting to conduct further experiments to test whether the starvation-induced accumulation of p53 has an effect on the development of specific forms of cancer, or whether certain ways of timing meals might affect p53 protein levels in such a way as to promote cancer development."

###

Prokesch A, Graef FA, Madl T, Kahlhofer J, Heidenreich S, Schumann A, Moyschewitz E, Pristoynik P, Blaschitz A, Knauer M, Muenzner M, Bogner-Strauss JG, Dohr G, Schulz TJ, Schupp M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB J. 2016 Nov 3. doi: 10.1096/fj.201600845R. pii: fj.201600845R. [Epub ahead of print] PubMed PMID: 27811061.

Contact:

Prof. Dr. Michael Schupp
Institute of Pharmacology
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 578 724
Email: [email protected]

Link:


Institute of Pharmacology
https://pharmakologie.charite.de/en/

Media Contact

Prof. Dr. Michael Schupp
[email protected]
49-304-505-78724

http://www.charite.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

May 17, 2025
blank

Obesity Drugs Aid Weight Loss After Bariatric Surgery

May 17, 2025

METTL13 Controls MYC, Drives Leukemia Cell Survival

May 17, 2025

Low-Dose Radiotherapy Combo Shows Promise in Head and Neck Cancer

May 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    89 shares
    Share 36 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    78 shares
    Share 31 Tweet 20
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

Obesity Drugs Aid Weight Loss After Bariatric Surgery

METTL13 Controls MYC, Drives Leukemia Cell Survival

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.