• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Food additive may influence how well flu vaccines work

Bioengineer by Bioengineer
April 7, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

EAST LANSING, Mich. – Michigan State University scientists have linked a common food preservative to an altered immune response that possibly hinders flu vaccines.

The study conducted in mice, presented at the 2019 Experimental Biology meeting in Orlando, Fla., April 7 at 9 a.m., offers up a new potential factor in vaccine effectiveness.

Tert-butylhydroquinone, or tBHQ, can be found in several food products including cooking oils, frozen meats (especially fish) and processed foods such as chips and crackers. Products don’t always have to include it on ingredient lists.

“If you get a vaccine, but part of the immune system doesn’t learn to recognize and fight off virus-infected cells, then this can cause the vaccine to be less effective,” said Robert Freeborn, a fourth-year doctoral student who led the study with Cheryl Rockwell, an associate professor in pharmacology and toxicology. “We determined that when tBHQ was introduced through the diet, it affected certain cells that are important in carrying out an appropriate immune response to the flu.”

Using various flu strains including H1N1 and H3N2, Freeborn and Rockwell focused on CD4 and CD8 T cells and incorporated tBHQ into the food of mice in an amount comparable to human consumption.

“CD4 T cells are like movie directors that tell everyone else what to do,” Freeborn said. “The CD8 T cells are the actors that do what the director wants.”

The researchers looked at several response factors including whether the T cells showed up, were able to do the right job and ultimately, recognize and remember the invading virus.

“Overall, we saw a reduced number of CD8 T cells in the lung and a reduction in the number of CD4 and CD8 T cells that could identify the flu virus in the mice that were exposed to tBHQ,” Freeborn said. “These mice also had widespread inflammation and mucus production in their lungs.”

TBHQ also slowed down the initial activation of T cells, reducing their ability to fight off an infection sooner. This allowed the virus to run rampant in the mice until the cells fully activated.

A second phase of the study showed the additive hindered the immune system’s ability to remember how to respond to the flu virus, particularly when another strain was introduced at another time. This resulted in a longer recovery and additional weight loss in the mice.

“It’s important for the body to be able to recognize a virus and remember how to effectively fight it off,” Freeborn said. “That’s the whole point of vaccines, to spur this memory and produce immunity. TBHQ seems to impair this process.”

###

The research was funded by the National Institutes of Health.

Media Contact
Sarina Gleason
[email protected]

Tags: Immunology/Allergies/AsthmaMedicine/HealthToxicologyVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

ZNF185 Boosts Mitochondrial and ER Stress in Cells

August 28, 2025

Soluble Epoxide Hydrolase Targets M1 Macrophages, Eases TMJ Osteoarthritis

August 28, 2025

Factors Influencing Consent for Health Data Exchange

August 28, 2025

Revolutionizing Medicine: CRISPR-Cas Targets Bacteria!

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ZNF185 Boosts Mitochondrial and ER Stress in Cells

Soluble Epoxide Hydrolase Targets M1 Macrophages, Eases TMJ Osteoarthritis

Factors Influencing Consent for Health Data Exchange

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.