• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Flushing nitrogen from seawater-based toilets

Bioengineer by Bioengineer
February 3, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 Muhammad Ali


A novel salt-tolerant bacterium cultured from the Red Sea effectively removes nitrogen from salty wastewater, suggests research from Pascal Saikaly’s team at KAUST. The bacterium could be used to treat sewage coming from toilets that use seawater for flushing in place of freshwater.

Less than one percent of Earth’s water is fresh and also accessible for human use. The world’s population is expected to grow to about ten billion by 2050 and will continue to place increasing pressure on this already rare resource.

Currently, toilet flushing accounts for about 30 percent of the world’s total domestic water demand, with an average human flushing a whopping 50 liters per day. Using seawater to flush toilets could partially alleviate pressure on freshwater resources.

“Seawater toilet flushing is already in practice in Hong Kong, Singapore and Tokyo,” says KAUST research scientist Muhammad Ali. “More coastal cities are likely to follow suit to reduce their dependence on freshwater resources and energy-intensive desalination. But the high salt content in the wastewater from seawater toilet flushing limits the performance of conventional nitrogen-removing bacteria used in treatment processes because they have low salt tolerance.”

Muhammad Ali and Ph.D. candidate Dario Rangel Shaw, both in Pascal Saikaly’s lab, conducted three years of tests to find whether the bacterium Candidatus Scalindua sp. AMX11, which they cultured from the Red Sea, could effectively remove nitrogen from salty wastewater.

Nitrogen needs to be removed from wastewater due to its negative effects on the environment and human health. Currently, the most energy-efficient method to do this involves the use of granules containing two types of nitrogen-removing bacteria. But one of these, an anaerobic ammonium oxidation bacteria, or anammox bacteria for short, has a very low tolerance for and effectiveness in saltwater.

KAUST’s Candidatus Scalindua sp. AMX11 was around 90 percent effective in treating wastewater with a salinity of about 1.2 percent and demonstrated high nitrogen removal rates. The tests were on real seawater–unlike other studies that used artificial versions.

“The findings demonstrate a proof of concept, and the next step is to demonstrate this technology in a microbial granular system containing Candidatus Scalindua sp. AMX11 bacteria and the other types of bacteria necessary for a full-scale wastewater treatment process,” explains Saikaly.

The team is also working with a Saudi fertilizer company to test its bioprocess for treating industrial wastewater.

###

Media Contact
Carolyn Unck
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/932/flushing-nitrogen-from-seawater-based-toilets

Related Journal Article

http://dx.doi.org/10.1016/j.watres.2019.115345

Tags: BacteriologyBiologyBiotechnologyHydrology/Water ResourcesMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cathepsin K Links Glucose Issues and Atherosclerosis

October 3, 2025
Conserved Small Sequences Revealed by Yeast Ribo-seq

Conserved Small Sequences Revealed by Yeast Ribo-seq

October 3, 2025

Tackling Multidrug-Resistant Gram-Negative Meningitis in Children

October 3, 2025

How Diet Affects Aging and Longevity Across Species

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cathepsin K Links Glucose Issues and Atherosclerosis

Conserved Small Sequences Revealed by Yeast Ribo-seq

Tackling Multidrug-Resistant Gram-Negative Meningitis in Children

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.