• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fluorescent protein sheds light on bee brains

Bioengineer by Bioengineer
March 3, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of bee researchers involving Heinrich Heine University Düsseldorf (HHU) has integrated a calcium sensor into honey bees to enable the study of neural information processing including response to odours. This also provides insights into how social behaviour is located in the brain, as the researchers now report in the scientific journal PLOS Biology.

Honeybees

Credit: Christian Verhoeven (www.verhoevenfoto.de)

An international team of bee researchers involving Heinrich Heine University Düsseldorf (HHU) has integrated a calcium sensor into honey bees to enable the study of neural information processing including response to odours. This also provides insights into how social behaviour is located in the brain, as the researchers now report in the scientific journal PLOS Biology.

Insects are important so-called model organisms for research. Despite more than 600 million years of independent evolution, insects share more than 60% of their DNA with humans. For several decades it was mainly the fruit fly whose genetic code could be used to study biological processes. Later, such research was expanded to other insects, with particularly promising results coming from the honey bee. Bees display complex social behaviour – they perform sophisticated behaviours while employing orientation, communication, learning and memory abilities, which make them interesting subjects for research into the brain’s function and neural processing.

A team of researchers from the Universities in Düsseldorf, Frankfurt am Main, Paris-Saclay and Trento has now developed a method to enable direct observation of bee brains, a work which has now been published in PLOS Biology.

A calcium sensor was integrated into the neurons. Calcium plays an important role in nerve cell activity. “We modified the genetic code of honey bees to make their brain cells produce a fluorescent protein, a sort of sensor that allows us to monitor the areas that are activated in response to environmental stimuli. The intensity of the light emitted varies according to neural activity,” explains Dr Albrecht Haase, Professor of Neurophysics at the University of Trento.

Professor Beye indicates that “the realisation of this “sensor bee” was particularly challenging because we had to work on the DNA of queen bees. Unlike fruit flies, the queen bee cannot easily be maintained in the laboratory, because each one needs its own colony.”

The research started with the inoculation of a specific genetic sequence into over 4,000 bee eggs. The protracted breeding, testing and selection process ultimately resulted in seven queens carrying the genetic sensor. When they reproduced in their own colony, the queens transmitted the gene to some of their offspring.

The sensor developed by the team of researchers was then used to study the bees’ sense of smell and how the perception of smell is encoded in the neurons. Dr Julie Carcaud, Assistant Professor at the University of Paris-Saclay and Dr Jean-Christophe Sandoz, Research Director at CNRS in Paris, explain: “The insects were stimulated with various odours and observed with a high-resolution microscope. This made it possible to detect which brain cells are activated by these smells and how this information is distributed in the brain.”

Dr Marianne Otte, co-author of the study from Düsseldorf: “The recordings were performed in vivo using techniques which enabled us to look into the brains of the bees. The insects were fixed in a measuring stand and then presented with various odour stimuli.”

Professor Dr Bernd Grünewald from Goethe University Frankfurt am Main and Director of the Honeybee Research Center in Oberursel: “The new “sensor bee” makes it possible to study how communication works within colonies and, more generally, how sociality affects the animals’ brains.”

Original publication

Carcaud J, Otte M, Grünewald B, Haase A, Sandoz J-C, Beye M (2023) Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. PLOS Biol 21(1): e3001984.

DOI: 10.1371/journal.pbio.3001984



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3001984

Subject of Research

Animals

Article Title

Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee

Article Publication Date

31-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tiny Fossils Reveal Major Insights into Arthropod Evolution

Tiny Fossils Reveal Major Insights into Arthropod Evolution

August 28, 2025
MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

August 28, 2025

Exploring Histopathology in Peste des Petits Ruminants

August 28, 2025

Lipid Metabolism Key to Oat’s Heat Stress Response

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Barriers and solutions for introducing donation after circulatory death (DCD) in Japan as a headline for a science magazine post, using no more than 8 words

Rewrite Insulin resistance in school-age children: comparison surrogate diagnostic markers as a headline for a science magazine post, using no more than 8 words

Rewrite Validation of the cancer fatigue scale (CFS) in a UK population as a headline for a science magazine post, using no more than 7 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.