• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Flowers’ genome duplication contributes to their spectacular diversity

Bioengineer by Bioengineer
July 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The evolution of plants has been punctuated by major innovations, none more striking among living plants than the flower.

Flowering plants account for the vast majority of living plant diversity and include all major crops.

The discovery that all flowering plants underwent a doubling of their genome at some point during their evolution has led to speculation that this duplication event triggered the diversification of this spectacular lineage, but the timing of this event has remained difficult to pin down.

Genome duplications provide a second copy of every single gene on which selection can act, potentially leading to new forms and greater diversity.

This process leads to the formation of large families of genes – we can examine the history of duplication in gene families in the genomes of all major groups of plants and then look to the rate of change in their DNA sequences in relation to the evidence presented by the plant fossil record. This provides us with a 'molecular clock', with which we can date evolutionary events.

James Clark from the University of Bristol's School of Earth Sciences, led the research.

He said: "We have found that, based on the signal of these gene families, the timing of this duplication does not support a direct role as a 'trigger' for flowering plant evolution.

"Rather, the duplication seems to have occurred at least 50 million years prior to the diversification of flowering plants.

"These results suggest that if the duplication had any impact on flowering plant evolution, then it may have been more of a 'long fuse' that may have paved the way for later innovations and diversification, rather than directly causing them."

Genome duplication undoubtedly had some role to play in the evolution of plants, and these findings highlight the need to carefully consider exactly when each duplication occurred.

Professor Philip Donoghue, also from the University of Bristol's School of Earth Sciences, co-authored the research.

He said: "Genome duplications are rare events, but they have often occurred at major turning points in evolutionary history, including in our own deep evolutionary history.

"Our approach will allow us and other scientists to get to the bottom of the relationship between genome duplication and evolutionary success."

###

Media Contact

James Clark
[email protected]
@BristolUni

http://www.bristol.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover New Switch That Triggers Programmed Cell Death

November 3, 2025
blank

Agricultural Practices: A Key Factor in the Preservation or Degradation of Protected Areas

November 3, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

Enhancing Adolescent Health Literacy: Insights from Nurses

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.