• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, October 1, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Flat fullerene fragments attractive to electrons

Bioengineer by Bioengineer
June 1, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Kyoto University in Japan have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties. The team published their findings in the journal Nature Communications.

IMAGE

Credit: YAP Co., Ltd

Researchers at Kyoto University in Japan have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties. The team published their findings in the journal Nature Communications.

“Our work could lead to new opportunities in a wide range of applications, such as semiconductors, photoelectric conversion devices, batteries, and catalysts,” says group leader Aiko Fukazawa at the Institute for Integrated Cell-Material Sciences (iCeMS).

Buckminsterfullerene (or simply ‘buckyball’) is a molecule in which 60 carbon atoms are bonded to form a spherical shape. It was named after structural similarities to the geodesic domes designed by the celebrated architect Buckminster Fuller, and its unique structure has continuously attracted the interest of scientists. The buckminsterfullerene and related spherical carbon clusters with different numbers of carbon atoms are colloquially known as fullerenes, after Fuller’s surname. One of their most intriguing characteristics is a capability to accept electrons, a process known as reduction. Because of their electron-accepting character, fullerenes and their derivatives have been extensively investigated as electron-transporting materials in organic thin-film transistors and organic photovoltaics. Nevertheless, fullerenes are an anomalous class of materials compared with any other conventional organic electron-acceptors, due to their robustness toward accepting multiple electrons. 

Theoretical chemists have proposed three possible factors that might be behind fullerene’s electron-accepting ability: the high symmetry of the entire molecule, its carbon atoms with pyramidally arranged bonds, and the presence of pentagonal substructures distributed among six-membered rings.

The Kyoto team focused on the influence of the pentagonal rings. They designed and synthesized flattened fragments of fullerene, and experimentally confirmed that these molecules could accept up to an equal number of electrons as the number of five-membered rings in their structure without decomposition.

“This surprising discovery highlights the crucial significance of the pentagonal substructure for generating stable multi-electron accepting systems,” says Fukazawa.

Experiments also revealed that the fragments display enhanced absorbance of ultraviolet, visible, and near-infrared light compared to a more limited absorbance by fullerene itself. This might open new possibilities in photochemistry, such as using light to initiate chemical reactions or developing light sensors or solar-powered systems.

The team will now explore the possibilities their flat fullerene fragments hold in the vast variety of applications associated with electron-transfer processes. It is unusual to get such high electron-accepting ability in molecules composed only of carbon, avoiding the typical requirement to introduce other electron-withdrawing atoms or functional groups onto a carbon-based framework. Going on to explore the effects of incorporating other atoms or chemical groups, however, might yield additional control over and versatility in chemical properties.

“We hope to pioneer the science and technology of what we call super-electron-accepting hydrocarbons, by taking advantage of their high degree of freedom for exploring the effects of structural modifications,” says Fukazawa.

 

###

DOI: 10.1016/j.ygeno.2022.110372

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):
At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.
https://www.icems.kyoto-u.ac.jp/

For more information, contact:
I. Mindy Takamiya/Christopher Monahan
[email protected]

 

 



Journal

Nature Communications

DOI

10.1016/j.ygeno.2022.110372

Article Title

Flattened 1D fragments of fullerene C60 that exhibit robustness toward multi-electron reduction

Article Publication Date

15-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

New study will examine irritable bowel syndrome as long COVID symptom

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In