• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fish flip a unique genetic switch in warming seas

Bioengineer by Bioengineer
April 22, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Moises Bernal 2020

Reef fish species uniquely respond to climate change, with some more vulnerable than others.

Five Great Barrier Reef fish species each activated different genetic responses to a marine heatwave in the Australian summer of 2015-16. This finding could help further understanding of climate change impacts on wild fish distributions.

“Scientists have extensively studied heatwave impacts on coral reefs because they are very sensitive to temperature and can easily bleach in warming conditions,” says former KAUST postdoc, Moisés Bernal, now an assistant professor at Auburn University, USA. “Previous studies have measured the effects of heatwaves on fish as a side effect of coral bleaching. Our study is novel in that it applies molecular techniques to directly understand the mechanisms used by different fish to cope with elevated temperatures.”

Bernal worked with international and KAUST colleagues to sequence RNA from the livers of fish species from reefs of Lizard Island, Australia. Samples were collected from fish before (December 2015), during (February and March 2016) and after (July 2016) the heatwave. The researchers aimed to find out which genes were turned on at different times during the heatwave in different fish species. Samples were taken from two damselfish species, the spiny chromis damselfish and the lemon damselfish, and from three cardinalfish species, the yellow-striped, Doederlein’s and five-lined cardinalfish.

“Unexpectedly, we found that all species reacted differently, using different genes to respond to warming conditions,” says former postdoc Celia Schunter, now at the University of Hong Kong. “There was an overlap, however, in the functions performed by these genes.”

The team found, for example, that the spiny chromis damselfish had the largest number of differentially expressed genes (3000) across the four time points, while the five-lined cardinalfish had the smallest (992). All five species, however, had activated molecular pathways associated with increased oxygen uptake, the energy-generating electron transport chain in cells, and cellular stress responses.

“Another surprising result was that there were large differences in the genes that were activated in February and March,” adds Schunter. “These two time points were separated by four weeks, but experienced similar temperatures, suggesting that both the intensity and duration of a heatwave are important for evaluating the responses of marine organisms.”

The study’s findings suggest that some species are more sensitive to climate change, while others are more resistant, possibly as a result of differences in their geographic ranges and evolutionary histories.

The study does, however, have some limitations. For example, the researchers did not have a baseline reference for liver gene expression in the five fish species from previous years. Also, the heatwave affected seasonal food availability, which could also influence gene expression.

Further studies could investigate how repeated heatwaves influence fish fitness and their long-term adaptation.

###

References

Bernal, M.A., Schunter, C., Lehmann, R., Lightfoot, D.J., Allan, B.J.M., Veilleux, H.D., Rummer, J.L., Munday, P.L., Ravasi, T. Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Science Advances 6, eaay3423 (2020).| article

About the first authors

Moisés Bernal and Celia Schunter

Alum

Moisés (left) and Celia are former KAUST postdocs whose work on understanding the ecological and evolutionary traits that determine how fish populations respond to natural and human-induced stressors continue as assistant professors at Auburn University, U.S. and the University of Hong Kong, respectively.

Media Contact
Carolyn Unck
[email protected]

Tags: BiodiversityBioinformaticsBiologyClimate ChangeClimate ScienceEcology/EnvironmentEvolutionTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Nitrogen Stress on Tobacco Metabolism

Impact of Nitrogen Stress on Tobacco Metabolism

October 27, 2025
Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

October 27, 2025

Cloud Relay Boosts Blockchain Logging for IoT Fermentation

October 27, 2025

How Uptake of DNA Fragments from Dying Cells Could Transform Mammalian Evolution and Genomics

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Young Adults Concerned About Mass Shootings Show Mixed Support for Gun Control Measures

Melatonin Inhibits Cancer Growth and Oncogene TRIP13

Nanoparticle Bevacizumab Improves Retinopathy in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.