• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

First visible-light induced simultaneous cleavage of C-C and C-N bonds with silver-modified polyoxometalate photocatalyst, researchers report

Bioengineer by Bioengineer
March 7, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cracking carbon bonds is a notoriously difficult problem, but it may hold the key to generating greener, more sustainable chemicals. A Chinese research team achieved the first visible-light-promoted simultaneous cleavage of carbon-carbon and carbon-nitrogen bonds via a silver-modified polyoxometalate photocatalyst, unlocking avenues for applications like carbon-neutral alternatives for fossil fuels. The researchers’ findings were published on March 3 in Polyoxometalates.

Visible-light-promoted POMs photocatalysts

Credit: Polyoxometalates, Tsinghua University Press

Cracking carbon bonds is a notoriously difficult problem, but it may hold the key to generating greener, more sustainable chemicals. A Chinese research team achieved the first visible-light-promoted simultaneous cleavage of carbon-carbon and carbon-nitrogen bonds via a silver-modified polyoxometalate photocatalyst, unlocking avenues for applications like carbon-neutral alternatives for fossil fuels. The researchers’ findings were published on March 3 in Polyoxometalates.

 

Inexpensive and highly efficient, photocatalytic technology is being used to solve increasingly serious environmental pollution problems. Polyoxometalates (POMs) are a class of metal-oxide clusters with unique physicochemical properties that make them particularly effective in the field of photocatalysis — using light energy to drive a chemical reaction.

 

Thanks to the stability of their molecular structures and reversible redox properties, POMs as photocatalysts can break down organic pollutants in wastewater and reduce carbon dioxide. POMs can also catalyze simple organic transformations, including bond formation reactions of carbon-carbon (C-C) and carbon-nitrogen (C-N).

 

However, most of the POMs can only work using ultraviolet light.

 

“It is of great significance to design and synthesize new visible-light-promoted POMs photocatalysts and explore their potential in new organic reactions,” said Shujun Li, study author from Henan Normal University.

 

With this goal, Li and colleagues explored synthesizing visible-light promoted POMs photocatalysts to wield in selective, simultaneous carbon bond cleaving.

 

“C-C and C-N bonds are the most widespread and fundamental bonds existing in organic compounds,” said Li. “Selectively catalytic cleavage of C–C bonds or C–N bonds for chemical transformations is an important topic in synthetic chemistry and has become one of the most attractive but challenging tasks.”

 

Chemists have pursued this objective over the past few decades because cracking these stubborn bonds might be key to finding valuable new chemicals or more sustainable ways to create known ones. As such, they have developed a variety of catalytic systems to cleave C–C bonds or C–N bonds separately. However, cleavage of both C–C and C–N bonds in a single organic transformation is a challenging objective.

 

“Few examples of simultaneous cleavage of C-C and C-N bonds in one substrate molecule have been reported so far,” said Li.

 

To make things more complicated, rapid, simultaneous cleavage of these types of bonds requires harsh reaction conditions such as high temperatures and strong oxidizing or initiating agents.

 

The research team combined niobium (Nb)/tungsten (W) mixed-addendum POM and silver (Ag) ion to obtain a silver-modified polyniobotungstate (Ag-Nb/W).

 

Ag-Nb/W showed strong absorption in the visible region, which encouraged the researchers to study its catalytic activity under visible light. The researchers’ investigations included analysis of substrate scope and bounds of conditions for best performance, as well as the stability and reusability of Ag-Nb/W.

 

The results indicated that the synthesis and structure of Ag-Nb/W supports efficient catalysis to simultaneously cleave C–C and C–N bonds under visible light in mild conditions. In addition, Ag-Nb/W could be reused up to six times without a reduction in the catalytic activity.

 

“To the best of our knowledge, this is the first example of visible-light-promoted simultaneous cleavage of C-C bond and C-N bond catalyzed by a POM photocatalyst, which coincides with the social demand for green chemistry and sustainable development,” said Li.

 

This work provides a feasible revelation for designing new visible-light-induced polyoxometalates photocatalysts to be used in organic reactions involving the cleavage of C–C and C–N bonds, said Li.

 

In future steps, the researchers plan to combine this compound with other solid carriers to design a dispersed and more stable photocatalytic material suitable for its applications in photocatalysis.

 

This work was supported by the National Natural Science Foundation of China and the Program for Science & Technology Innovation Talents in Universities of Henan Province.

 

Other contributors include Na Li, Gang Li, Yubin Ma, Mengyao Huang, Qingchun Xia, Qianyi Zhao and Xuenian Chen from Henan Normal University. Chen is also affiliated with Zhengzhou University.

 

##

 

About Polyoxometalates  

 

Polyoxometalates is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of polyoxometalates, featured in rapid review and fast publishing, sponsored by Tsinghua University and published by Tsinghua University Press. Submissions are solicited in all topical areas, ranging from basic aspects of the science of polyoxometalates to practical applications of such materials. Polyoxometalates offers readers an attractive mix of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats, Comments, and Highlight.

 

About SciOpen 

 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

 



Journal

Polyoxometalates

DOI

10.26599/POM.2023.9140024

Article Title

A silver-modified polyniobotungstate for visible-light-induced simultaneous cleavage of C-C and C-N bonds

Article Publication Date

3-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

LMRC

SwRI creates innovative, efficient hydrogen compressor for FCEV refueling stations

March 28, 2023
Researchers

Advanced electrode to help remediation of stubborn new ‘forever chemicals’

March 28, 2023

Marijuana-derived compounds could reverse opioid overdoses

March 28, 2023

Pulsing ultrasound waves could someday remove microplastics from waterways

March 28, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New method for fast, efficient and scalable cloud tomography

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

Significant disparities in breast cancer care persist, but surgeons can drive change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In