• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

First underwater carpet cloak realized, with metamaterial

Bioengineer by Bioengineer
May 5, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by IOA

Researchers at the Institute of Acoustics (IOA) of the Chinese Academy of Sciences have designed and fabricated an underwater acoustic carpet cloak using transformation acoustics, a scientific first.

The research was published online in Scientific Reports on April 6.

An acoustic cloak is a material shell that can control the propagation direction of sound waves to make a target undetectable in an acoustic system. The carpet cloak modifies the acoustic signature of the target and mimics the acoustic field obtained from a reflecting plane, so that the cloaked target is indistinguishable from the reflecting surface.

The field of transformation acoustics focuses on the design of new acoustic structures. It shows how to control the propagation of acoustic waves. The parameters of the cloak shell can be given by transformation acoustics.

However, in most cases, these parameters are too complex for practical use. To solve this problem, YANG Jun and his IOA team adopted a scaling factor and simplified the structure of the carpet cloak with only modest impedance mismatch.

The research team then used layers of brass plates featuring small channels filled with water to construct the model cloak. This material possesses effective anisotropic mass density in long-wavelength regimes.

The structure of the carpet cloak, comprised of layered brass plates, is therefore simplified at the cost of some impedance match. "The carpet cloak has a unit cell size of about 1/40 of the wavelength, making it able to control underwater acoustic waves in the deep subwavelength scale," said YANG Jun.

The proposed carpet cloak has shown good performance in experimental results across a wide frequency range. In tests, a short Gaussian pulse propagates towards a target bump covered with the carpet cloak; the scattered wave then returns in the backscattering direction. The cloaked object successfully mimics the reflecting plane and is imperceptible to sound detection.

###

Previously, the IOA researchers had designed and fabricated a carpet cloak in air. The results of this earlier research were published in the Journal of Applied Physics (Volume 113, Issue 2, January 2013).

Media Contact

YANG Jun
[email protected]

http://english.cas.cn/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.