• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

First structure of human cotransporter protein family member solved

Bioengineer by Bioengineer
October 29, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UTSW


DALLAS – Oct. 28, 2019 – In work that could someday improve treatments for epilepsy, UT Southwestern scientists have published the first three-dimensional structure of a member of a large family of human proteins that carry charged particles – ions – across the cell membrane.

The potassium chloride cotransporter 1 (KCC1) structure solved in this study carries positively charged potassium ions (K+) and negatively charged chloride (Cl-) ions across cell membranes to help regulate the volume of the cell. The protein is one of a large family of cotransporters found in many of the body’s tissues, particularly in the kidneys and the brain.

Despite extensive study of cotransporters, the lack of high-resolution structures has hindered a deeper understanding of their actions. The scientists solved the structure using cryo-electron microscopy (cryo-EM) – an advanced technology in which samples are frozen at extremely low temperatures at speeds that prevent the formation of ice crystals.

Mutations in this family of cotransporters can lead to diseases such as hereditary epilepsy, including one form that starts in infancy, said Dr. Xiao-chen Bai, corresponding author of the Science study. Drugs that target cotransporters are currently used as diuretics to treat high blood pressure.

“Cryo-EM was the only way to determine the structure of an integral membrane protein such as this one. We hope this structure will facilitate the design of drugs that target this protein,” said Dr. Bai, Assistant Professor of Biophysics and Cell Biology and a Virginia Murchison Linthicum Scholar in Medical Research as well as a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar.

Proteins on the cellular membrane have been particularly resistant to X-ray crystallography, formerly considered the gold standard in structural biology technology before cryo-EM.

In cryo-EM, samples are viewed using robot-assisted microscopes that can be twice as tall as a person. These microscopes containing high-tech electron detectors work with powerful computers to record multiple images and apply advanced algorithms to interpret the data. UT Southwestern’s Cryo-EM Facility operates 24 hours a day, seven days a week.

This work at UT Southwestern using cryo-EM also required advanced specimen preparation techniques that Dr. Bai is known for internationally.

###

Other study participants included researchers at Vanderbilt University in Nashville and from China’s Zhejiang University School of Medicine, Tianjin University, and Wuxi Biortus Biosciences Co. Ltd. One of the corresponding authors is Dr. Jingtao Guo of Zhejiang University School of Medicine, who began the project while a postdoctoral researcher in the UTSW laboratory of Dr. Youxing Jiang, Professor of Physiology and Biophysics. Dr. Jiang holds the Rosewood Corporation Chair in Biomedical Science and is a W.W. Caruth, Jr. Scholar in Biomedical Research at UT Southwestern and an Investigator of the Howard Hughes Medical Institute.

The study received funding from China’s Ministry of Science and Technology, the National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation, the Fundamental Research Funds for the Central Universities, and Zhejiang University, and from CPRIT, The Welch Foundation, the National Institutes of Health, and the Leducq Foundation.

The authors report no competing financial interests.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 15 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

Media Contact
Deborah Wormser
[email protected]

Original Source

https://www.utsouthwestern.edu/newsroom/articles/year-2019/cotransporter-protein.html

Related Journal Article

http://dx.doi.org/10.1126/science.aay3129

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Methods to Measure Aggregate PFAS Exposure

October 2, 2025

Spin Squeezing Achieved in Diamond NV Centers

October 2, 2025

Spirituality Eases Occupational Stress in Nurses’ Lives

October 2, 2025

Hashimoto’s Thyroiditis: CA 19-9 and CA 72-4 Levels

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating Urban Flood Models with Multisource Data

Comparing Methods to Measure Aggregate PFAS Exposure

Spin Squeezing Achieved in Diamond NV Centers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.