• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

First patient enrolled in stem cell therapy trial for traumatic injury

Bioengineer by Bioengineer
December 21, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Athersys

The first patient has enrolled in a Phase II clinical trial evaluating a stem cell therapy for the potential early treatment of traumatic injuries and their subsequent complications at The University of Texas Health Science Center at Houston (UTHealth).

The MATRICS-1 (MultiStem® Administration for Trauma Related Inflammation and Complications) study is being conducted at Memorial Hermann-Texas Medical Center.

According to the Centers for Disease Control (CDC), trauma is the leading cause of death for individuals under the age of 45 and the third leading cause of death in the U.S., accounting for approximately 180,000 fatalities each year. It is also a leading cause of serious disability, especially among young people and members of the military that suffer trauma.

The randomized, double-blinded, placebo-controlled study is led by Charles S. Cox Jr., MD, the George and Cynthia Mitchell Distinguished Chair in Neurosciences in the Department of Pediatric Surgery at McGovern Medical School at UTHealth and co-director of the Red Duke Trauma Institute at Memorial Hermann-TMC.

The clinical study will evaluate the safety and efficacy of MultiStem in the treatment of injured patients with severe hemorrhage for the prevention and mitigation of complications that can result following severe traumatic injury. The single-center trial will enroll up to 156 subjects. Patients will be randomized and administered either placebo or MultiStem cellular therapy following admission to the intensive care unit and after initial resuscitation has concluded and stabilizing procedures have been performed to stop bleeding. All study subjects will also receive all standard of care treatments for their injuries.

Evidence suggests the hyperinflammatory response following traumatic injuries is similar to other causes of acute tissue injury, such as acute ischemic stroke, acute respiratory distress syndrome, traumatic brain injury, and spinal cord injury. Activation and mobilization of the peripheral immune system after an injury contributes to local secondary tissue damage. This immune activation may also result in systemic inflammatory response syndrome, which can leave the patient susceptible to a range of complications, including secondary infections and organ failure conditions, that prevent or complicate recovery.

“The use of this treatment strategy leverages a long legacy of investigation into the common mechanism of action of down-regulation of the inflammatory response to injury and how it mitigates complications of trauma,” said Cox, who is also a faculty member at MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences.

Results of preclinical injury models and clinical data from human trials in other indications suggest early administration of MultiStem cells may reduce the inflammatory cascade that ensues after severe acute injury by reducing the number of inflammatory systemic immune cells in and around sites of injury, and by decreasing immune cell activation and the release of inflammatory cytokines in response to circulating products of tissue injury. The study will evaluate whether MultiStem’s modulation of these immune responses to traumatic injury can mitigate secondary tissue injury, organ failure states, and other complications that impede patient recovery following severe traumatic injury.

The trial is funded by a grant from the Medical Technology Enterprise Consortium (MTEC) awarded to McGovern Medical School. MTEC is a 501(c)(3) biomedical technology consortium collaborating under an agreement with the U.S. Army Medical Research and Development Command. The Memorial Hermann Foundation is providing additional funding. Athersys is the trial sponsor and is supplying the investigational clinical product for the conduct of the trial, as well as providing regulatory and operational support.

Co-investigators from McGovern Medical School include Charles Wade, PhD; Laura Moore, MD; Kevin Finkel, MD; Claudia Pedroza, PhD; and Erin Fox, PhD.

###

Media Contact
Amy Laukka
[email protected]

Original Source

https://www.uth.edu/news/story.htm?id=3f82e80e-5921-4586-9ea0-ed5d5c39dbf1

Tags: Clinical TrialsMedicine/HealthTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Restoring Mitochondrial Dynamics to Treat Ovarian Insufficiency

January 19, 2026

Radiogenomics Reveals Heterogeneous Immune Response in Liver Cancer

January 19, 2026

Cognitive Impact on Balance in Active Older Women

January 19, 2026

Balancing Costs and Quality in DRG Payment Model

January 19, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Mitochondrial Dynamics to Treat Ovarian Insufficiency

LRRC8A Fortifies Heart Against Pressure-Induced Hypertrophy

Radiogenomics Reveals Heterogeneous Immune Response in Liver Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.