• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, August 14, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

First-of-its-kind flower smells like dead insects to imprison ‘coffin flies’

Bioengineer by Bioengineer
May 21, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First plant found to deceive pollinators by mimicking decomposing insects

IMAGE

Credit: Credit: T. Rupp, B. Oelschlägel, K. Rabitsch et al.

The plant Aristolochia microstoma uses a unique trick: its flowers emit a fetid-musty scent that seems to mimic the smell of decomposing insects. Flies from the genus Megaselia (family Phoridae) likely get attracted to this smell while searching for insect corpses to mate over and lay their eggs in. When they enter a flower, they are imprisoned and first pollinate the female organs, before being covered with pollen by the male organs. The flower then releases them unharmed.

“Here we show that the flowers of A. microstoma emit an unusual mix of volatiles that includes alkylpyrazines, which are otherwise rarely produced by flowering plants. Our results suggest that this is the first known case of a flower that tricks pollinators by smelling like dead and rotting insects rather than vertebrate carrion,” says corresponding author Prof Stefan Dötterl, the head of plant ecology group and the Botanical Gardens at the Paris-Lodron University of Salzburg, Austria. The study is published in the open access journal Frontiers in Ecology and Evolution.

Between 4-6% of flowering plants use a ‘deceptive pollination strategy’: they use odor, color, and touch to advertize a reward to pollinators, such as nectar, pollen, or mating and breeding sites, but don’t actually give any. The deception works because pollinators are poor at distinguishing between the reward and the mimic. Deceptive pollination is typical of many orchids, but has also independently evolved in other plants, including in the genus Aristolochia (family Aristolochiaceae or birthworths).

“Aristolochia contains over 550 species around the world, especially in the tropics and subtropics. They are mostly woody vines and herbaceous perennials with striking, complex flowers that temporarily imprison their visitors to get pollinated,” says Prof Christoph Neinhuis, coauthor of the study, who cultivates one of the largest Aristolochia collections worldwide at TU Dresden Botanical Garden, Germany.

When pollinators enter an Aristolochia flower, they are guided by hairs downwards to a small chamber which holds the sexual organs. Trapped inside, they deposit any pollen they carry onto the female organs, before the stamens ripen and release more pollen. When the hairs that block the entrance to the chamber wither, the pollinators can escape, and a new cycle can begin.

“Many Aristolochia species are known to attract flies with floral scents, for example mimicking the smell of carrion or feces of mammals, decaying plants, or fungi,” says first author Thomas Rupp, a PhD student at the Paris-Lodron University of Salzburg. “But our curiosity was piqued by A. microstoma, a species known only from Greece: unlike other Aristolochia with their showy flowers, A. microstoma has inconspicuous brownish flowers that lie horizontally, partly buried or close to the ground among leaf litter or rocks. The flowers release an unpleasant, carrion-like smell, noticeable to people at a short distance.”

Rupp and colleagues sampled A. microstoma plants from three sites in Greece: one West of Athens and two on the Peloponnese. From 1457 flowers (of which 72% were in the first, female phase) they collected a total of 248 arthropods, ranging from flies from four families to centipedes and springtails. Only female and male Megaselia flies – M. scalaris and members of the M. angusta/longicostalis cluster of closely related species, as determined through DNA barcoding and from morphology – were found carrying pollen inside its flowers, indicating that they are the normal pollinators.

The authors then used gas chromatography with mass spectrometry (GC/MS) to analyze the flowers’ scent ‘bouquet’. They found 16 compounds, including strong-smelling nitrogen- and sulfur-bearing volatile molecules. Among the main ‘ingredients’ were oligosulfides, produced by many plant species whose pollinators are carrion flies or bats: a fetid scent characteristic of decomposing meat. But surprisingly, another was 2,5-dimethylpyrazine (8-47% of total composition), a musty scent typical of cooked rice or roasted peanuts – known in nature to occur in the carapace of decomposing beetles and well as in the urine of rodents. Very few plants are known to produce this compound, strongly suggesting that A. microstoma mimics an unusual fake ‘reward’ to attract specialist pollinators.

“Earlier studies had suggested that A. microstoma might be pollinated by leaf litter-dwelling insects such as ants, because of the orientation and position of the flowers. But here we show that this isn’t correct: instead, the main pollinators are Megaselia ‘coffin flies’. As their name suggests, these flies feed on carrion, on which they lay their eggs and which serves as food for the larvae, which is why they are often used as evidence in forensic medicine,” says Dötterl.

“We show A. microstoma flowers emit a simple but highly unusual mix of scents that includes 2,5-dimethylpyrazine, a molecule that occurs neither in vertebrate carcasses nor in feces, but does occur in dead beetles. We conclude that A. microstoma likely uses a strategy that has never been reported before: its flowers mimic the smell of invertebrate carrion to attract and imprison pollinators. The peculiar orientation of the flowers close to the ground may also help, as pollinating coffin flies search for breeding sites or food close to the ground, in leaf litter or between rocks,” concludes coauthor Prof Stefan Wanke from TU Dresden, Germany.

###

Media Contact
Mischa Dijkstra
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fevo.2021.658441

Tags: BiodiversityBiologyEcology/EnvironmentEntomologyEvolutionPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Effective steering responses and successful rates of honeybee under electrical stimulations with different duty cycles

Experimental verification on steering flight of honeybee by electrical stimulation

August 13, 2022
David Wetz

UTA researcher explores integration and power electronic regulation of batteries for Navy

August 12, 2022

Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras

August 12, 2022

Overcoming a major manufacturing constraint

August 12, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonWeather/StormsZoology/Veterinary ScienceUrbanizationVehiclesVirologyVirusWeaponryViolence/CriminalsVaccineVaccinesUrogenital System

Recent Posts

  • Experimental verification on steering flight of honeybee by electrical stimulation
  • UTA researcher explores integration and power electronic regulation of batteries for Navy
  • Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras
  • Overcoming a major manufacturing constraint
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In