• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

First in vivo proof-of-concept in Steinert’s myotonic dystrophy

Bioengineer by Bioengineer
June 25, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ana Buj Bello’s team, a researcher in an Inserm unit at Genethon, the AFM-Telethon laboratory, has made the proof-of-concept of a CRISPR-Cas9 approach in a mouse model of Steinert’s myotonic dystrophy, the most common neuromuscular disease in adults

CRISPR-Cas9: First in vivo proof-of-concept in Steinert’s myotonic dystrophy, a neuromuscular disease

Ana Buj Bello’s team, a researcher in an Inserm unit at Genethon, the AFM-Telethon laboratory, has made the proof-of-concept of a CRISPR-Cas9 approach in a mouse model of Steinert’s myotonic dystrophy, the most common neuromuscular disease in adults. Indeed, thanks to this genome editing approach, the expanded CTG triplet repeat in the DMPK gene, which is responsible for the disease, was “cut” and removed from the gene, and the number of toxic RNA aggregates was decreased in the muscle cells of the tested models. Based on these encouraging results, published in the June 5 issue of Molecular Therapy, the researchers are currently investigating whole body treatment.

Steinert’s myotonic dystrophy (DM1) is the most common form of adult muscular dystrophies. With a genetic origin, its prevalence is estimated at 1 in 8,000 persons, and is mainly characterized by difficulties in relaxing after contraction (myotonia) and a progressive muscle weakness. The disease is due to mutations in the DMPK gene, in particular, to an increase in the number of repeats of a small 3-nucleotide DNA sequence, a CTG triplet, located in the DMPK gene. This results in the accumulation of mutated DMPK RNA in the cell nucleus, leading to alterations in cellular functions. There is currently no cure for this neuromuscular disease.

In this study, Ana Buj Bello’s team, in collaboration with Denis Furling’s team at the Institute of Myology and Genevieve Gourdon’s team at the Imagine Institute, have developed and evaluated a gene therapy approach using the CRISPR-Cas9 molecular scissors in cellular and in vivo mouse (DMSXL) models of the disease:

In the cellular model : The team has identified guide RNAs that target DNA sequences around the CTG triplet region of the DMPK gene, and demonstrated that the Cas9 protein removes this part of the genome, resulting in the disappearance of nuclear toxic RNA aggregates in treated cells.

In the mouse model : The team has used the same technology in vivo and administrated intramuscularly gene therapy vectors (AAV9) that carry Cas9 and guide RNAs targeting the DMPK gene. Few weeks after injection, a decrease in toxic RNA aggregates was observed in the nuclei of muscle cells of diseased mice.

“After several years of work, we have been able to demonstrate that the CRISPR-Cas9 system works in skeletal muscle for Steinert’s disease. These results represent a very encouraging first step, and we now plan to optimize this approach to correct the entire musculature and other tissues affected by the disease”, highlights Ana Buj-Bello, lead author of the work.

###

Publication : Genome editing of expanded CTG repeats within the human DMPK gene reduces nuclear RNA foci in muscle of DM1 mice – Mirella Lo Scrudato1, Karine Poulard1, Célia Sourd1, Stéphanie Tomé2, Arnaud F. Klein3, Guillaume Corre1, Aline Huguet2, Denis Furling3, Geneviève Gourdon2, and Ana Buj-Bello1

Affiliations : 1 Genethon, UMR_S951 Inserm, Univ Evry, Université Paris Saclay, F-91000 Evry, France; 2 INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, F-75015 Paris, France; 3 Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France

About Genethon – http://www.genethon.fr

Created and financed by AFM-Téléthon, Genethon aims to provide patients with innovative gene therapy treatments. Having played a pioneering role in deciphering the human genome, Genethon now employs close to 180 researchers, doctors, engineers and regulatory affairs specialists, and is one of the leading international centres for preclinical and clinical research and development in gene therapy treatments for rare diseases. 8 products resulting from Genethon’s research are currently being tested in the clinical trials.

About AFM-Telethon – http://www.afm-telethon.fr

AFM-Telethon is an association of patients and their relatives, committed to fighting disease. Thanks to donations from the Téléthon (€85.8 million in 2018), it has become a major player in biomedical research into rare diseases in France and across the world. Today, it supports clinical trials testing treatments for genetic diseases of the eyes, blood, brain, immune system and muscles. It is unlike other associations in that its laboratories have the ability to design, produce and test their own innovative therapies.

Free telephone number for affected families: 0800 35 36 37

Press contacts:

Stéphanie Bardon, Marion Delbouis

+(33)01.69.47.29.01 – 06.45.15.95.87 – [email protected]

Media Contact
Marion Delbouis
[email protected]
https://www.afm-telethon.fr/sites/default/files/pr_steinert_crispr_gnt_en.pdf

Tags: BiologyBiotechnologyGene TherapyGenesGenetics
Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.