• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First brain-wide map shows how sex and intimacy rewire the brain

Bioengineer by Bioengineer
February 22, 2024
in Biology
Reading Time: 3 mins read
0
Pair of prairie voles
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How does sex relate to lasting love? To answer that question, scientists have long studied a small Midwestern rodent called the prairie vole, one of the few mammals known to form long-term, monogamous relationships.

Pair of prairie voles

Credit: Aubrey Kelly

How does sex relate to lasting love? To answer that question, scientists have long studied a small Midwestern rodent called the prairie vole, one of the few mammals known to form long-term, monogamous relationships.

A team of researchers including Steven Phelps at The University of Texas at Austin has created the first brain-wide map of regions that are active in prairie voles during mating and pair bonding. The researchers found that bonding voles experience a storm of brain activity distributed across 68 distinct brain regions that make up seven brain-wide circuits. The brain activity correlates with three stages of behavior: mating, bonding and the emergence of a stable, enduring bond.

Most of these brain regions the researchers identified were not previously associated with bonding, so the map reveals new places to look in the human brain to understand how we form and maintain close relationships.

Earlier studies concluded that male and female brains often use fundamentally different mechanisms to produce the same behaviors, such as mating and nurturing offspring. But in this study, bonding males and females had nearly identical patterns of brain activity.

“That was a surprise,” said Phelps, a professor of integrative biology at UT Austin and senior author of the new study in the journal eLife. “Sex hormones like testosterone, estrogen and progesterone are important for sexual, aggressive and parental behaviors, so the prevailing hypothesis was that brain activity during mating and bonding would also be different between the sexes.”

Compared with humans, prairie voles have whirlwind courtships. Within half an hour of being together, a male and female begin to have sex, and they will do so repeatedly, often many times an hour. Within a day, their amorousness will lead the pair to form a bond that can last a lifetime. Bonded pairs will groom each other, console each other when stressed, defend their shared territory and rear their young together.

The researchers were able to pinpoint with high resolution which brain cells were active in vole brains at various points over the course of the process that leads to and includes bonding. This is the first time such a method has been applied to prairie voles. By studying more than 200 prairie voles across multiple times during mating and bonding, the researchers produced an unprecedented and foundational data set.

The strongest predictor of activity across the 68 brain regions that the researchers identified surprised them. It was male ejaculation, suggesting the experience elicits a profound emotional state—and not only in the affected males. Females, too, had more bonding-related brain activity with males who reached that milestone.

“The brain and behavior data suggest that both sexes may be having orgasm-like responses, and these ‘orgasms’ coordinate the formation of a bond,” Phelps said. “If true, it would imply that orgasms can serve as a means to promote connection, as has long been suggested in humans.”

Phelps cautioned that it’s impossible to know whether a female prairie vole is having an orgasm simply by watching its sexual behavior, though previous research has found that some female animals such as monkeys have these physiological responses.

In addition to Phelps, the study’s co-authors are Morgan Gustison, a former postdoctoral researcher at UT Austin now at the University of Western Ontario, Rodrigo Muñoz-Castañeda at Weill Cornell Medicine, and Pavel Osten at Cold Spring Harbor Laboratory.

The National Institutes of Health funded the research.



Journal

eLife

DOI

10.7554/eLife.87029.3

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Sexual coordination in a whole-brain map of prairie vole pair bonding

Article Publication Date

21-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sodium Selenite and Probiotics Enhance Alfalfa Silage Quality

November 20, 2025
blank

RNA Sequencing Sheds Light on Cucumber Fruit Formation

November 20, 2025

Morphometric Variations of Scartelaos histophorus in Mekong Delta

November 20, 2025

Decoding Bark Beetle Gut Microbiome’s Detoxification Powers

November 19, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Vascular Endothelial Growth in Ovarian Cancer

Renal Denervation Reduces Cardiac Inflammation Post-Ischemia

Genetic Elements Boost Extrachromosomal DNA Retention

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.