• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Firing of neurons changes the cells that insulate them

Bioengineer by Bioengineer
August 22, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Balint Nagy

Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology by Balint Nagy, Maria Kukley and colleagues at the University of Tübingen, Germany. The findings suggest the existence of a complex and nuanced interplay between neurons and the non-neuronal cells that support and protect them.

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes, which wrap the axons of neurons in the central nervous system with myelin to electrically insulate them. Neurons signal to OPCs through chemical synapses. Previous work has shown that electrical or optical stimulation of nerve fibers influences the proliferation of OPCs and their differentiation into oligodendrocytes, but whether that stimulation acts like an on-off switch, influencing OPCs only by its presence or absence, or more like a dimmer switch, inducing a graded response in the OPC, has been unclear.

To investigate that question, the authors studied oligodendroglial cells in the corpus callosum, a nerve tract which connects the two hemispheres of the brain, both in fresh brain slices and in living rodents. Using electrodes, they stimulated neurons to fire and recorded responses in the neighboring OPCs.

They found that stimulating neuronal fibers in brain slices at low frequencies led to a slowly oscillating movement of ions through the membrane of OPCs, while high-frequency stimulation caused a much more rapidly oscillating movement of ions. High-frequency stimulation of neuronal fibers in living animals led to greater OPC proliferation (creating more OPCs) over the course of a week than did low-frequency stimulation; low-frequency stimulation, in turn, led to more differentiation of OPCs into pre-myelinating oligodendrocytes, the cells that then go on to develop into oligodendrocytes which make myelin.

How OPCs translate different patterns of neuronal firing into differences in proliferation and differentiation is unknown, but differences in firing pattern have been seen to affect gene expression in neurons themselves in a graded rather than on-off way, suggesting that a similar mechanism may be at work in OPCs. Intriguingly, different neuronal firing patterns affect properties of chemical synapses between neurons and OPC, as well as intracellular concentrations of ions in OPCs such as sodium, potassium, and calcium, in a distinct fashion. Hence, it is possible that neurons use synapses with OPCs to influence OPCs behavior, including proliferation and maturation. It is not yet known whether the frequency-related differences in behavior of OPCs actually match the neuron's respective needs.

Myelination in the brain is plastic. It can be influenced by our everyday behavior and is responsive to environmental inputs, with physical activity increasing it and social isolation decreasing it. Understanding the mechanisms mediating the effects of activity on myelination may offer significant opportunities for therapeutic intervention in disorders in which myelination or remyelination are deficient. "This research may open new perspective to therapy of demyelinating disorders where remyelination strongly relies on the increased proliferation and differentiation of OPCs," commented Kukley.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2001993

Citation: Nagy B, Hovhannisyan A, Barzan R, Chen T-J, Kukley M (2017) Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol 15(8): e2001993. https://doi.org/10.1371/journal.pbio.2001993

Funding: Deutsche Forschungsgemeinschaft http://www.dfg.de (grant number EXC307). MK received funding for her research group and for this work from the Werner Reichardt Centre for Integrative Neuroscience (CIN) at the Eberhard Karls University of Tübingen. The CIN is an Excellence Cluster funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the Excellence Initiative (EXC 307). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Deutsche Forschungsgemeinschaft http://www.dfg.de (grant number KU2569/1-1). Received by MK. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Maria Kukley
[email protected]

Home

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.2001993

Share12Tweet7Share2ShareShareShare1

Related Posts

Alfalfa Cystatin Genes: Stress Response Insights

Alfalfa Cystatin Genes: Stress Response Insights

November 3, 2025
Drones and Lichens Team Up to Uncover Dinosaur Bones

Drones and Lichens Team Up to Uncover Dinosaur Bones

November 3, 2025

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microbial Metabolites Prevent Urinary Catheter Encrustation

Alfalfa Cystatin Genes: Stress Response Insights

Hip Dislocation Risk in Cerebral Palsy Children: Study Findings

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.