• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 12, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fireflies have a potential — protective ‘musical armor’ against bats

Bioengineer by Bioengineer
April 5, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How do fireflies defend themselves against predators?

IMAGE

Credit: BRANDON ALMS

A new study at Tel Aviv University reveals a possible defense mechanism developed by fireflies for protection against bats that might prey on them. According to the study, fireflies produce strong ultrasonic sounds – soundwaves that the human ear, and more importantly the fireflies themselves, cannot detect. The researchers hypothesize that these sounds are meant for the ears of bats, keeping them away from the poisonous fireflies, and thereby serving as a kind of ‘musical armor’. The study was led by Prof. Yossi Yovel, Head of the Sagol School of Neuroscience, and a member of the School of Mechanical Engineering and the School of Zoology at the George S. Wise Faculty of Life Sciences. It was conducted in collaboration with the Vietnam Academy of Science and Technology (VAST). The paper was published in iScience.

Fireflies are known for their unique glow, used as a mating signal. Since their bodies contain poison, the light flashes probably also serve as an aposematic signal (a warning to potential predators). This signal is also the firefly’s weakness, simply because it makes it an easy target for predators. Bats are among the fireflies’ most prevalent potential predators, and some bats have poor vision, rendering the flashing signal ineffective. This led the researchers to check whether fireflies had some additional layer of protection against bats.

Prof. Yossi Yovel explains that the idea for this study came up accidentally, during a study that tracked bats’ echolocation. “We were wandering around a tropical forest with microphones capable of recording bats’ high frequencies, when suddenly, we detected unfamiliar sounds at similar frequencies, coming from fireflies,” he recalls. “In-depth research using high-speed video revealed that the fireflies produce the sound by moving their wings, and that the fireflies themselves can’t hear this frequency. Consequently we hypothesized that the sound is not intended for any internal communication within the species,” adds Ksenia Krivoruchku, the PhD student who led the study.

Following the accidental discovery, the team at Prof. Yovel’s laboratory examined three different species of fireflies that are common in Vietnam (Curtos Luciola, Sclerotia) plus one Israeli species (Lampyroidea), and found that they all produce these unique ultrasonic sounds, but cannot hear them.

Can it be concluded that fireflies have developed a special defense mechanism specifically for bats? Prof. Yovel emphasizes that this claim was not proved in the study, but several features do point to this conclusion. First of all, the fact that the fireflies themselves can’t hear the sound, while bats can both hear it and use it to find the fireflies – so it’s more likely that it serves as a warning signal. Krivoruochku adds that the discovery of ultrasonic sounds in fireflies is in itself an important contribution to the study of predator-prey relations: “The idea of warning signals that the sender itself cannot detect is known from the world of plants but is quite rare among animals. Our discovery of the ‘musical battle’ between fireflies and bats may pave the way for further research, and possibly the discovery of a new defense mechanism developed by animals against potential predators.”

###

Media Contact
Noga Shahar
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.isci.2021.102194

Tags: Animal Research/RightsBiologyNaturePets/Ethology
Share12Tweet8Share2ShareShareShare2

Related Posts

Kratofil microscope 2021

Snyder Institute researchers discover new approach to healing skin infections and wounds

August 12, 2022
Adhesive hydrogel

Using sound and bubbles to make bandages stickier and longer lasting

August 12, 2022

Pralsetinib achieves tissue-agnostic benefits for patients with RET gene fusions

August 12, 2022

The circadian clock makes sure plant cells have the time of their lives

August 12, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVirologyUniversity of WashingtonVirusUrbanizationUrogenital SystemWeaponryVehiclesWeather/StormsVaccineVaccinesViolence/Criminals

Recent Posts

  • UTA researcher explores integration and power electronic regulation of batteries for Navy
  • Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras
  • Overcoming a major manufacturing constraint
  • Snyder Institute researchers discover new approach to healing skin infections and wounds
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In