• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fire air pollution weakens forest productivity

Bioengineer by Bioengineer
December 21, 2018
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Xu Yue


Fire is an important element of Earth system. Every year, global fires directly emit 2 Pg C (billion-ton carbon) into atmosphere, which is ~20% of total emissions from human activities. In addition to the carbon emissions, fire plumes also generate air pollutants, including ozone (O3) and fine mode aerosols (e.g., PM2.5, particulate matter less than 2.5 μm in diameter). It’s well known that these air pollutants may worsen air quality in the local and downwind regions. However, it’s not known that they also change land carbon budget by influencing photosynthesis of unburned forests.

Recently, a new study in Nature Communications explored the ecological impacts of fire air pollution. Increases in O3 and aerosols have opposite impacts on plant health. O3 is phytotoxic and reduces plant photosynthesis, while aerosols may promote photosynthesis by enhancing diffuse radiation. It is unclear what’s the net impacts of these pollutants on biosphere from the same fire. This study combined three state-of-the-art models and a full set of observations from ground sites, satellites, and literature, to quantify the net impacts of fire O3 and aerosols on gross primary productivity (GPP), a metric representing total photosynthesis of forests.

Results show that surface O3 reduces global GPP by 4.9 Pg C (3.6%) every year, in which fire O3 accounts for ~20%. In contrast, global aerosols enhance annual GPP by 1.0 Pg C (0.8%) with fire contributions of only 5%. The fertilization effect of fire aerosols is very limited, likely because fire emissions usually occur in tropical forests where dense cloud masks the aerosol effects. Consequently, the net impact of fire air pollution is dominated by O3, leaving a reduction of 0.9 Pg C (0.6%) in annual GPP.

Regionally, fire air pollution causes larger damages to forest productivity. For example, the 2006 large fire in Indonesia reduces local GPP by 3.6%. Furthermore, the fire pollution can cause impacts through long-range transport. We find GPP reductions of 0.6% in eastern U.S. and 0.5% in eastern China where fire events are very limited. In those regions, high level of background O3 from human activities provides such a sensitive environment that even a mild increase in O3 by fires can cause a discernable influence.

This new research reveals a missing pathway of fire impacts on global carbon cycle. The damage to ecosystem productivity not only occurs in fire regimes, but also over the downwind areas through long-range transport of air pollution. “Such negative impacts may exacerbate in the future as fire activities are expected to escalate in a warming climate.” said Xu Yue, the first author of the study from Institute of Atmospheric Physics, Chinese Academy of Sciences.

###

Media Contact
Ms. Zheng Lin
[email protected]
86-108-299-5053

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-07921-4

Tags: Atmospheric ScienceClimate ChangeEarth SciencePollution/RemediationTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Key Technical Insights for RNA-Sequencing Experiments

Key Technical Insights for RNA-Sequencing Experiments

October 15, 2025
blank

Age and Sex Shape Memory and Circadian Rhythms

October 14, 2025

New $6.5 Million NIH Grant Aims to Uncover Why Losing the Y Chromosome Worsens Certain Cancers

October 14, 2025

Biofortified Yeast in Corn Hydrolysate: Antioxidant Boost

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1243 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analyzing Nursing Resilience Through Rodgers’ Evolutionary Lens

Choosing Wheat Seed Sources: Insights from Gedeo Farmers

Assessing Fertility Before Breast Cancer Chemotherapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.