• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Finding the body clock’s molecular reset button

Bioengineer by Bioengineer
April 27, 2015
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep disturbances to other behavioral, cognitive, and metabolic abnormalities, commonly associated with jet lag, shift work and exposure to light at night, as well as with neuropsychiatric conditions such as depression and autism.

In a study published online April 27 in Nature Neuroscience, the authors, led by researchers at McGill and Concordia universities in Montreal, report that the body’s clock is reset when a phosphate combines with a key protein in the brain. This process, known as phosphorylation, is triggered by light. In effect, light stimulates the synthesis of specific proteins called Period proteins that play a pivotal role in clock resetting, thereby synchronizing the clock’s rhythm with daily environmental cycles.

Shedding light on circadian rhythms

“This study is the first to reveal a mechanism that explains how light regulates protein synthesis in the brain, and how this affects the function of the circadian clock,” says senior author Nahum Sonenberg, a professor in McGill’s Department of Biochemistry.

In order to study the brain clock’s mechanism, the researchers mutated the protein known as eIF4E in the brain of a lab mouse so that it could not be phosphorylated. Since all mammals have similar brain clocks, experiments with the mice give an idea of what would happen if the function of this protein were blocked in humans.

Running against the clock

The mice were housed in cages equipped with running wheels. By recording and analyzing the animals’ running activity, the scientists were able to study the rhythms of the circadian clock in the mutant mice.

The upshot: the clock of mutant mice responded less efficiently than normal mice to the resetting effect of light. The mutants were unable to synchronize their body clocks to a series of challenging light/dark cycles – for example, 10.5 hours of light followed by 10.5 hours of dark, instead of the 12-hour cycles to which laboratory mice are usually exposed.

“While we can’t predict a timeline for these findings to be translated into clinical use, our study opens a new window to manipulate the functions of the circadian clock,” says Ruifeng Cao, a postdoctoral fellow in Dr. Sonenberg’s research group and lead author of the study.

For co-author Shimon Amir, professor in Concordia’s Department of Psychology, the research could open a path to target the problem at its very source. “Disruption of the circadian rhythm is sometimes unavoidable but it can lead to serious consequences. This research is really about the importance of the circadian rhythm to our general well-being. We’ve taken an important step towards being able to reset our internal clocks — and improve the health of thousands as a result.”

Story Source:

The above story is based on materials provided by McGill University.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dietary Fat Type Shapes Anti-Tumor Immunity in Obese Mice

Evaluating and Mitigating Risks in Hydrogeothermal Heating

CDK Inhibitors Boost Neuroblastoma Differentiation, Retinoic Acid Sensitivity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.