• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Finding a needle in a haystack: Discovery of Ti 2 InB 2 for synthesizing layered TiB

Bioengineer by Bioengineer
May 31, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nature Communications

Scientists at Tokyo Institute of Technology (Tokyo Tech) managed to use boron as the X element in a family of materials called MAX phases, for which only carbon and nitrogen could previously be used. A clever search strategy allowed them to avoid resorting to trial and error to design this novel material, from which layered TiB can be obtained for applications in Li- or Na-ion batteries.

The discovery of new materials and their potential applications have long been the enablers of the sophisticated technological advances and devices that we have grown accustomed to. Considering that there are dozens of elements in the periodic table and thousands of possible combinations, it is no surprise that researchers resort to ingenious ways to predict which compounds could be synthesized in practice and would have favorable properties.

One class of useful materials is referred to as “MAX phases”. These are ternary compounds consisting of three different elements represented by M, A, and X that exhibit ceramic and metallic properties. What is useful about these compounds is that they form layered structures from which the “A-layer” can be etched, leaving behind what is known as 2D MXenes. MXenes have attracted a lot of attention because they can take a number of different forms and structures and offer excellent chemical and mechanical stabilities. This makes them applicable in a wide variety of fields, such as batteries and catalysis.

Unfortunately, MAX compounds have been limited to using carbon or nitrogen for the X element… until now. A research team from Tokyo Tech, led by Prof. Hideo Hosono, studied the possibility of synthesizing MAX phases composed of titanium, indium, and boron: Ti2InB2. Motivated by the fact that borides have attracted attention for their promising applications in nanoelectronics, the team ultimately desired to synthesize TiB-based MXenes.

Because direct synthesis of layered TiB is impossible, the team first had to determine an A-element for synthesizing a MAX phase (that is, the middle element in Ti-A-B). Then, they would have to find a way to etch the A-layer from the MAX phase to obtain the coveted layered TiB. In order to determine which elements were suitable for the A in the MAX phase, they employed a clever automated search strategy through computer-assisted calculations. They first analyzed the “binary” structures formed between each of the candidates for A and either TiB or Ti3B4. Those that proved stable were subjected to “ternary” calculations for determining the global stability of the ternary compound. A final verification with high-precision structural calculations was carried out for the best candidates, which finally pointed at Ti2InB2 as the best option. With this strategy, they reduced the computational cost of their search unmeasurably and demonstrated a clever approach for finding desired ternary compounds. “A feasible strategy to simplify the search for ternary compounds based on the available domain knowledge is in high demand,” explains Hosono.

The team demonstrated that Ti2InB2 could be effectively synthesized, and then explored the possibility of removing In from the MAX phase to obtain the desired MX phase. Although the team did manage to obtain layered TiB from the MAX phase, its structure was not exactly compatible with that of existing 2D MXenes. However, by tuning the necessary conditions of their approach, the researchers believe that it will be possible to obtain TiB MXene in the future. Thus, they carried out a number of calculations demonstrating its superior electrical properties, hinting at its potential application as an excellent anode material for lithium- or sodium-ion batteries. “The present research will extend the fascinating class of MAX phases and MXenes,” concludes Hosono.

###

Media Contact
Emiko Kawaguchi
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2019/044418.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10297-8

Tags: Chemistry/Physics/Materials SciencesMaterials
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Early-Onset Gastric Cancer Trends in BRICS

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.