• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Finding a cure for multiple sclerosis

Bioengineer by Bioengineer
September 30, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biomedical scientist Seema Tiwari-Woodruff has received funding to identify compounds that can repair damaged axons

IMAGE

Credit: Tiwari-Woodruff lab, UC Riverside.

RIVERSIDE, Calif. — Seema Tiwari-Woodruff, a professor of biomedical sciences in the School of Medicine at the University of California, Riverside, and her colleagues have received a grant of $373,000 from the National Multiple Sclerosis Society for a project in which her lab will select the five best candidate compounds to speed up nerve impulses, a promising new avenue to treat multiple sclerosis.

Multiple sclerosis, a leading cause of neurological disability affecting roughly 2.3 million people worldwide, is triggered when the immune system attacks and damages the myelin sheath. Earlier research in Tiwari-Woodruff’s lab showed the ligand chloroindazome (IndCl) and its analogues are able to remyelinate — add new myelin to — damaged axons. Remyelination of axons speeds up nerve impulses, suggesting IndCl and similar drugs may represent a promising new avenue of treating the underlying loss of myelin in multiple sclerosis.

Tiwari-Woodruff’s collaborators are John Katzenellenbogen at the University of Illinois at Urbana-Champaign and Scott Eliasof at Frequency Therapeutics. The project, titled “Remyelination and Immunomodulation with analogues of Chloroindazole,” will analyze compounds for efficacy, potency, and dosing schedule, after evaluating their pathology, immunology, and functional remyelination outcomes in mouse models of multiple sclerosis.

“Eventually, we will evaluate the safety pharmacology of two compounds with the best efficacy, pharmacokinetics and central nervous system exposure,” Tiwari-Woodruff said. “Our overall goals through this Fast Forward grant, organized together with our commercial partner, Frequency Therapeutics, are tightly focused on obtaining critical safety and efficacy information on a set of verified candidates needed to identify the best of IndCl analogues.”

Specifically, IndCl stimulates ERβ, an estrogen receptor in the body. Because ERβ is present not only in oligodendrocytes, the mylenating cells of the central nervous system, but also microglia, neurons, and T-cells, IndCl may have therapeutic benefits for other autoimmune and demyelinating diseases in addition to multiple sclerosis.

Tiwari-Woodruff explained that pharmaceutical agents currently approved for the treatment of multiple sclerosis reduce relapse rates but do not prevent neurodegeneration or initiate myelin repair.

“Accumulating evidence indicates that estrogens are both neuroprotective and immunomodulatory, thereby making them attractive candidates to fulfill these needs,” she said. “However, although estrogens display immense potential for treating multiple sclerosis, they possess several deleterious side effects, including male feminization and increasing risk of breast and endometrial cancers. Our research has focused on the development of ERβ-selective compounds for the treatment of multiple sclerosis that would be most suitable for commercial development.”

The two-year grant will support a lab technician and, partially, a postdoctoral researcher.

###

Media Contact
Iqbal Pittalwala
[email protected]

Tags: BiologyCell BiologyEndocrinologyMedicine/HealthMental HealthMusculatureneurobiologyNeurochemistryQuality of Life
Share13Tweet8Share2ShareShareShare2

Related Posts

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025
Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Redox Minerals and Organics in Jezero Crater

How Virtuousness Boosts Nurses’ Commitment Through Just Culture

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.