• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 21, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Field study shows icing can cost wind turbines up to 80% of power production

Bioengineer by Bioengineer
March 4, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo courtesy of Hui Hu/Iowa State University

AMES, Iowa – Wind turbine blades spinning through cold, wet conditions can collect ice nearly a foot thick on the yard-wide tips of their blades.

That disrupts blade aerodynamics. That disrupts the balance of the entire turbine. And that can disrupt energy production by up to 80 percent, according to a recently published field study led by Hui Hu, Iowa State University’s Martin C. Jischke Professor in Aerospace Engineering and director of the university’s Aircraft Icing Physics and Anti-/De-icing Technology Laboratory.

Hu has been doing laboratory studies of turbine-blade icing for about 10 years, including performing experiments in the unique ISU Icing Research Tunnel. Much of that work has been supported by grants from the Iowa Energy Center and the National Science Foundation.

“But we always have questions about whether what we do in the lab represents what happens in the field,” Hu said. “What happens over the blade surfaces of large, utility-scale wind turbines?”

We all know about one thing that recently happened in the field. Wind power and other energy sources froze and failed in Texas during last month’s winter storm.

Searching for a field site

Hu wanted to quantify what happens on wind farms during winter weather and so several years ago began organizing a field study. But that was more complicated than he expected. Even in Iowa, where some 5,100 wind turbines produce more than 40% of the state’s electricity (according to the U.S. Energy Information Association), he wasn’t given access to turbines. Energy companies usually don’t want their turbine performance data to go public.

So Hu – who had made connections with researchers at the School of Renewable Energy at North China Electric Power University in Beijing as part of an International Research Experiences for Students program funded by the National Science Foundation – asked if Chinese wind farms would cooperate.

Operators of a 34-turbine, 50-megawatt wind farm on a mountain ridgetop in eastern China agreed to a field study in January 2019. Hu said most of the turbines generate 1.5 megawatts of electricity and are very similar to the utility-scale turbines that operate in the United States.

Because the wind farm the researchers studied is not far from the East China Sea, Hu said the wind turbines there face icing conditions more like those in Texas than in Iowa. Iowa wind farms are exposed to colder, drier winter conditions; when winter cold drops to Texas, wind farms there are exposed to more moisture because of the nearby Gulf of Mexico.

Measuring the ice

As part of their field work, the researchers used drones to take photos of 50-meter-long turbine blades after exposure to up to 30 hours of icy winter conditions, including freezing rain, freezing drizzle, wet snow and freezing fog.

The photographs allowed detailed measurement and analyses of how and where ice collected on the turbine blades. Hu said the photos also allowed researchers to compare natural icing to laboratory icing and largely validated their experimental findings, theories and predictions.

The photos showed, “While ice accreted over entire blade spans, more ice was found to accrete on outboard blades with the ice thickness reaching up to 0.3 meters (nearly 1 foot) near the blade tips,” the researchers wrote in a paper recently published online by the journal Renewable Energy. (See sidebar for the full research team.)

The researchers used the turbines’ built-in control and data-acquisition systems to compare operation status and power production with ice on the blades against more typical, ice-free conditions.

“That tells us what’s the big deal, what’s the effect on power production,” Hu said.

The researchers found that icing had a major effect:

“Despite the high wind, iced wind turbines were found to rotate much slower and even shut down frequently during the icing event, with the icing-induced power loss being up to 80%,” the researchers wrote.

That means Hu will continue to work on another area of wind-turbine research – finding effective ways to de-ice the blades so they keep spinning, and the electricity keeps flowing, all winter long.

###

The research team

Hui Hu of aerospace engineering led the field study of ice buildup on wind turbine blades. Other researchers and co-authors are:

  • Linyue Gao, an Iowa State graduate with a doctorate in aerospace engineering who’s now a postdoctoral associate at the St. Anthony Falls Laboratory of the University of Minnesota
  • Tao Tao, a graduate student at the School of Renewable Energy at North China Electric Power University in Beijing
  • Yongqian Liu, a professor at the School of Renewable Energy at North China Electric Power University in Beijing

Read the paper

“A field study of ice accretion and its effects on the power production of utility-scale wind turbines,” Renewable Energy, Volume 167 (April 2021), https://doi.org/10.1016/j.renene.2020.12.014

Media Contact
Hui Hu
[email protected]

Original Source

https://www.news.iastate.edu/news/2021/03/04/windturbineicing

Related Journal Article

http://dx.doi.org/10.1016/j.renene.2020.12.014

Tags: Energy SourcesTechnology/Engineering/Computer ScienceWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Bubble with titanium trigger titanic explosions

April 21, 2021
IMAGE

Jane Austen quote encoded in a polymer

April 21, 2021

New results about the diets of people who lived on the Great Hungarian Plain

April 21, 2021

To design truly compostable plastic, scientists take cues from nature

April 21, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    61 shares
    Share 24 Tweet 15
  • New evidence in search for the mysterious Denisovans

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationViolence/CriminalsVirologyUrogenital SystemWeaponryVaccineVaccinesVirusUniversity of WashingtonVehiclesZoology/Veterinary ScienceWeather/Storms

Recent Posts

  • Bubble with titanium trigger titanic explosions
  • Jane Austen quote encoded in a polymer
  • New results about the diets of people who lived on the Great Hungarian Plain
  • To design truly compostable plastic, scientists take cues from nature
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In