• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Fibre-integrated, high-repetition-rate water window soft X-ray source

Bioengineer by Bioengineer
February 23, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Gebhardt, M., Heuermann, T., Klas, R. et al.

Bright, coherent soft X-ray radiation (SXR) is used in many scientific applications such as advanced absorption spectroscopy or lens-less imaging, and in fundamental research e.g. to produce extremely short isolated optical pulses. Therefore, the generation, control, and detection of this type of short-wavelength light is highly important in fields like fundamental atomic physics, solid-state physics, the semiconductor industry, material science and biology.
To date, high photon flux in the soft X-ray spectral region is mostly delivered by large-scale facilities like synchrotrons or free electron lasers. An alternative is to use high-order harmonic generation (HHG) sources, which are currently driven by pulsed laser systems with very high peak powers. It is highly desired to increase the repetition rate of such sources beyond 1000 shots per second (e.g. to allow for a faster data acquisition/increase the signal-to-noise ratio) and to make them simpler, more compact and easier to operate.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Jens Limpert from the Friedrich-Schiller-University Jena, and co-workers have developed a laser-driven soft X-ray source, which is based on high-order harmonic generation inside of an antiresonant gas-filled hollow core fibre (ARHCF). They designed the source such that the intensity of the driving laser pulses is enhanced by temporal self-compression inside of the hollow fibre before the soft X-rays are generated. The integration of laser enhancement and high-order harmonic generation in a single gas-filled hollow core fibre allows “compact, high repetition rate laser technology, including commercially available systems, to drive simple and cost-effective, coherent high-flux SXR sources”, the scientists state in their paper. In their work, they have optimized the input laser parameters and the gas particle density inside of the fibre such that a macroscopic HHG signal builds up towards the fibre end. This soft X-ray light emerges directly from the output of a potentially flexible hollow-core fibre. The reported method opens new avenues for simple and powerful laser-driven soft X-ray sources based on fibre technology. This allows moderate peak power laser systems with high repetition rates to drive HHG directly.

The authors state, “This enables the first 100 kHz-class repetition rate, table-top SXR source, that delivers an application-relevant flux of 2.8×106 Photons/s/eV around 300 eV.”. They go on to demonstrate a proof-of-principle spectroscopy measurement at the carbon K-edge. Furthermore, they show a long term run of the source over more than 20 minutes. While this source is based on a high repetition rate 2 μm wavelength fibre laser, it is applicable to any laser technology in the short-wavelength infrared.

The scientists forecast that their results are “most interesting for a variety of applications, which significantly benefit from compact and easy-to-use high repetition rate SXR sources”. They add: “These sources could use ARHCFs for beam delivery, self-compression and HHG in a single apparatus, making them more affordable, and available to a much broader community in fundamental and applied sciences with medical applications in reach.”

###

Media Contact
Martin Gebhardt
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00477-x

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    77 shares
    Share 31 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prognostic Factors in Advanced Cervical Cancer

Sure! Here’s a rewritten version of the headline tailored for a science magazine post about Bronchiectasis and NTM Research Registry data presented at the European Respiratory Society Congress: “New Insights into Bronchiectasis and NTM Infections Unveiled from Research Registry Data at European Respiratory Society Congress” If you want, I can also help rewrite the two abstracts themselves or create a more detailed magazine-style summary based on them. Just let me know!

Platelet Activation Drives Inflammation in Myasthenia Gravis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.