• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Fiber optics capture seismic signatures of the rose parade

Bioengineer by Bioengineer
May 6, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Seismological Research Letters

Yes, there’s a prize for the most beautiful flower-filled float in the Rose Parade each year, but how about a prize for the most ground-shaking marching band? According to a new study, the 2020 honors go to the Southern University and A&M College, followed closely by the hometown Pasadena City College Honor band.

These bragging rights and other interesting signatures of the Rose Parade were captured by fiber optic telecommunications cable lying below the parade route. In Seismological Research Letters, Zhongwen Zhan of the California Institute of Technology and colleagues describe how they converted these dark or “unused” fibers within cables into a dense seismic array.

The technique, called distributed acoustic sensing (DAS), uses the tiny internal flaws in a long optical fiber as thousands of seismic sensors. An instrument at one end of the fiber sends laser pulses down the cable that are reflected off the fiber flaws and bounced back to the instrument. When an earthquake disturbs the fiber, researchers can examine changes in the size, frequency and phase of the reflected pulses to learn more about the resulting seismic waves. (Read more about DAS here.)

For the Rose Parade project, Zhan and colleagues examined data from a 2.5-kilometer (1.6 mile) stretch of cable under the parade route that contained about 400 seismic sensors. In this case, the disturbance to the cables was the compression and flexure of the roads by parade participants.

“The main goal of the Pasadena Array is to detect small earthquakes and image the geological structure underneath the city. It has been operating only since November 2019, so we actually do not have any good-sized earthquake in the city yet,” explained Zhan. “The Rose Parade, as a well-controlled event–no other traffic except the parade, traveling all in one direction at almost constant speed–provides a rare opportunity for network calibration.”

Their seismic readout “turned out to be quite broadband,” Zhan said. The array captured the distinct signals of zig-zagging police motorcycles clearing the route, the bend of the road as heavy floats weighing 16,000 to 18,000 kilograms (17.6 to 19.9 tons) passed overhead, and a series of harmonic frequencies that corresponds to the even stepping of the marching bands. The “heaviest” float measured in this way was the Amazon studios float, which contained a bus and rocket mounted on a truck.

The researchers were even able to see a gap in the DAS record when the “Mrs. Meyer’s Clean Day” float got stuck at a tight turn in the route and backed up the parade traffic for six minutes.

“This project inspires us that in the future we will probably use heavy vehicles for calibrations of DAS arrays in other cities,” Zhan said.

The annual Rose Parade has been held on News Year’s Day since 1890, and more than 700, 000 spectators crowd the curbsides each year. The event takes place before the Rose Bowl, an American college football game.

###

Media Contact
Becky Ham
[email protected]

Related Journal Article

http://dx.doi.org/10.1785/0220200091

Tags: Earth SciencePlate TectonicsTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Legal vs Illegal Cannabis Sources in Germany Explained

November 5, 2025

DDR1 Fuels Cervical Cancer and Immune Evasion

November 5, 2025

Proteomics Reveals Pathways in Early Coronary Disease

November 5, 2025

Leibniz-HKI Honored Again for Its Commitment to Equal Opportunity in Personnel Management

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Legal vs Illegal Cannabis Sources in Germany Explained

DDR1 Fuels Cervical Cancer and Immune Evasion

Proteomics Reveals Pathways in Early Coronary Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.