• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, December 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Female animals may learn mate preferences based on what sets other females’ choices apart from the crowd

Bioengineer by Bioengineer
October 3, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Females may infer what makes a male attractive by observing the choices of more experienced females, and the context of those choices matters, according to a mathematical model publishing October 3rd in the open access journal PLOS Biology. Rather than simply copying their peers, females might learn to prefer rare traits that set successful males apart from others, Emily DuVal at Florida State University, US, and colleagues report.

Female animals may learn mate preferences based on what sets other females’ choices apart from the crowd

Credit: Composite image by Emily DuVal and Elliot Schunke, original images by Jean van der Meulen and Sally Wynn (platinumportfolio) (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

Females may infer what makes a male attractive by observing the choices of more experienced females, and the context of those choices matters, according to a mathematical model publishing October 3rd in the open access journal PLOS Biology. Rather than simply copying their peers, females might learn to prefer rare traits that set successful males apart from others, Emily DuVal at Florida State University, US, and colleagues report.

Sexual selection — where traits become more common because of their attractiveness to the opposite sex — can produce strange and elaborate characteristics, such as huge antlers, bright plumage, and flamboyant courtship dances. However, exactly why females prefer certain traits over others is poorly understood. Female preferences in a given population often change across generations, and sometimes preferences differ among individuals within one population. Existing theories suggest that females prefer traits indicating genetic quality; that male traits and female preferences are linked in a positive feedback loop; or that females’ senses bias them towards certain traits. But no theory fully explains the variety of traits and preferences seen in nature.

To address this, researchers developed a mathematical model in which females learn which traits are attractive by watching others. In the model, young females observe the mate choices of adult females and learn to prefer traits that distinguish the chosen male from other males. In other words, females learned to prefer the rarest trait of a successful male, but this trait was not necessarily what the observed female was really choosing. Over several generations, female preferences caused rare male traits to become more common, which then made them less attractive. This helped to maintain variation in male traits, rather than a single attractive trait outcompeting the others.

The results of this mathematical model are consistent with several features of sexual selection in nature, such as rapid evolutionary changes, and the persistence of variation in male traits and female preferences. Animals use social information to make decisions in many contexts. Inferring the attractiveness of potential mates may be an extension of this general tendency, the authors say.

DuVal and her co-authors add, “While scientists have known for a long time that females can copy each other’s choice of mates, no one has previously considered that these copying females aren’t mind-readers.  When we considered that females can make mistakes in identifying what traits others find attractive, we found this produces patterns that have long puzzled biologists, for example maintaining variety in male traits and female preferences over time.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002269  

Citation: DuVal EH, Fitzpatrick CL, Hobson EA, Servedio MR (2023) Inferred Attractiveness: A generalized mechanism for sexual selection that can maintain variation in traits and preferences over time. PLoS Biol 21(10): e3002269. https://doi.org/10.1371/journal.pbio.3002269

Author Countries: United States

Funding: Financial support during preparation of this work was provided by National Science Foundation Integrative Organismal Systems award 1453408, Division of Biological Infrastructure award 1457541, and Division of Environmental Biology 2243423 (to EHD), National Institutes of Health T32 HD049336 (to CLF), National Science Foundation Integrative Organismal Systems award 2015932 and The Santa Fe Institute (to EAH), and National Science Foundation Division of Environmental Biology award 1939290 (to MRS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002269

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Images of male ruffs

The evolutionary paradox behind the unusual mating strategy of the ruff

December 7, 2023
Well-designed digital health platforms can improve the quality of life for people with Parkinson’s disease and their caregivers

Grunt or whistle: successful honey-hunters know how to communicate with wild honey-seeking birds

December 7, 2023

It turns out, this fossil plant is really a fossil baby turtle

December 7, 2023

Accelerating drug development for lung diseases: New insights from single-cell genomics

December 7, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mothers need more “exclusive breastfeeding” support

New source of stem cells in injury-affected brains of patients

Rochester’s Laser Lab heads new national inertial fusion energy hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In