• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Faulty sensing: Cellular energy sensor linked to the progression of chronic kidney disease

Bioengineer by Bioengineer
December 7, 2018
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Nephrology,TMDU


Tokyo, Japan – Chronic kidney disease (CKD), an affliction characterized by progressive loss of kidney function, affects millions of people worldwide and is associated with multi-organ damage, cardiovascular disease, and muscle wasting. Just like engines, living cells require energy to run, thus the combined millions of cells forming an organ have huge energy requirements. Although the heart has the highest energy needs of all human organs, the kidneys come a close second. Energy depletion can result in kidney damage and the build-up of toxic compounds in the body, contributing to the progression of CKD. Currently, there is no effective treatment to halt this progression.

Adenosine triphosphate (ATP) is the major “fuel” in most living cells and is converted to adenosine monophosphate (AMP) during energy transfer. A specialized energy sensor called 5?-AMP-activated protein kinase (AMPK) detects even the slightest changes in cellular energy by sensing AMP levels, triggering the production of ATP in response to energy depletion. However, AMPK activity is decreased in CKD and the mechanism controlling this dysregulation is unclear.

Now, a research team from TMDU and Kyushu University has shown that failure to sense AMP is the key mechanism underlying the inactivity of AMPK in CKD. In a recent study published in Kidney International, they outline how they came to this conclusion and what it may mean for CKD patients.

“Metabolites can tell us a lot about what’s going on in a cell,” explains lead author Hiroaki Kikuchi. “In CKD mice, metabolite profiling showed that despite high levels of AMP, there was a substantial decrease in AMPK activation, leading us to conclude that the AMP-sensing function of AMPK was defective.”

Armed with this new information, the researchers tried bypassing the AMP-sensing mechanism to determine whether AMPK could still be activated in CKD mice. By treating the mice with A-769662, an AMPK activator that binds at a different site to AMP, they could significantly attenuate CKD progression and correct associated tissue damage.

Critically, the build-up of waste products in the blood as a result of reduced kidney function was shown to be responsible for the decreased AMP-sensing activity of AMPK. “Our findings suggest that energy depletion, CKD progression, and the accumulation of toxic metabolites form a vicious cycle in CKD patients,” says co-corresponding author Eisei Sohara. “However, AMPK activation via AMP-independent mechanisms can break this cycle and represents a novel therapeutic approach for the treatment of CKD.”

###

The article, “Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease”, was published in Kidney International at https://doi.org/10.1016/ j.kint.2018.08.030.

Media Contact
Eisei SOHARA
[email protected]

Original Source

http://www.tmd.ac.jp/english/press-release/20181207_1/index.html

Related Journal Article

http://dx.doi.org/10.1016/j.kint.2018.08.030

News source: https://scienmag.com/

Tags: Cell BiologyInternal MedicineMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Nurses’ Insights on Hajj Mass Gathering Preparedness

October 26, 2025

Neonatal Asphyxia: Risks and Trends Revealed

October 26, 2025

TGF-β1 Modulates Macrophages, Reduces Painful Neuromas

October 26, 2025

Measuring Greenhouse Gas Emissions in Cederberg’s Healthcare

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    194 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vitamin D Links to Brain Volume in Autistic Kids

Nurses’ Insights on Hajj Mass Gathering Preparedness

Exploring Submergence Tolerance in Rice Seedlings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.