• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Fat cells found to play a central role in renal failure-associated cardiomyopathy

Bioengineer by Bioengineer
June 29, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Fat cells found to play a central role in renal failure-associated cardiomyopathy.

HUNTINGTON, W.Va. – New research from a team at the Marshall University Joan C. Edwards School of Medicine reveals the central role of fat cells in the systemic oxidant stress observed in renal failure-associated cardiomyopathy.

The research, published June 25 in the Journal of the American Society of Nephrology, is the first publication to demonstrate such an important role for fat cells known as adipocytes in a disease previously thought to have little involvement of such tissues.

Using a mouse model of experimental renal failure and a diet enriched in fat and fructose to simulate a western diet, the researchers found that production of the peptide NaKtide in fat cells inhibited the signaling function of the sodium pump, Na/K-ATPase. The peptide also prevented the development of renal failure-associated cardiomyopathy as well as other consequences of renal failure such as anemia. Targeting NaKtide production to skeletal muscle cells with a similar manipulation had essentially no effect on the cardiomyopathy or anemia in mice with experimental renal failure.

“This research provides an important breakthrough with translational application and demonstrates that Na/K-ATPase oxidant-amplification loop and/or adipocytes are potential targets for disease intervention,” said lead author Komal Sodhi, M.D., associate professor of surgery and biomedical sciences at the Marshall University Joan C. Edwards School of Medicine.

Future research will help determine if these findings can be confirmed in humans, representing a novel and successful therapeutic target in chronic renal failure.

“According to this novel study, targeting this oxidant amplification loop in adipocytes could serve as a viable clinical strategy for the prevention and treatment of renal failure-associated cardiomyopathy,” said Joseph I. Shapiro, M.D., dean of the Joan C. Edwards School of Medicine and the study’s senior author.

###

In addition to Sodhi, authors of the paper included Xiaoliang Wang, M.D./Ph.D., Muhammad Chaudhry, Hari Vishal Lakhani, Mishghan Zehra, Rebecca Pratt, Ph.D., Athar Nawab, Cameron Cottrill, Brian Snoad, Fang Bai, James Denvir, Ph.D., Jiang Liu, Ph.D., Juan Sanabria, M.D., the late Zijian Xie, Ph.D., and Joseph Shapiro, M.D., all of Marshall University, and Nader Abraham, Ph.D., of New York Medical College.

This research was supported by funds provided by (1) the National Institutes of Health (NIH) (HL109015, HL071556, HL105649, HL55601, HL34300 and R15 1R15DK106666), (2) the BrickStreet Foundation and (3) the Huntington Foundation. The work was reviewed and approved by the Marshall University Institutional Animal Care and Use Committee.

Media Contact
Sheanna M. Spence
[email protected]

Original Source

https://jcesom.marshall.edu/news/musom-news/fat-cells-found-to-play-a-central-role-in-renal-failure-associated-cardiomyopathy/

Related Journal Article

http://dx.doi.org/10.1681/ASN.2019101070

Tags: Cell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

November 2, 2025

Nurses’ Emotional Challenges in Surgical Patient Care

November 2, 2025

Enhancing Gene Imputation via Cross-Modality Alignment

November 2, 2025

Real-World Insights on Biologic Treatment Adherence

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Antenna Tuning via Advanced Simulations and Predictors

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

Nurses’ Emotional Challenges in Surgical Patient Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.