• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Faster breeding sea urchins: A comeback animal model for developmental biology

Bioengineer by Bioengineer
May 19, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Tsukuba have created albino sea urchins using CRISPR and hope this species can bring the sea urchin back to the forefront of studies in developmental biology

IMAGE

Credit: University of Tsukuba

Shimoda, Japan — For some, sea urchins are a pretty addition to an aquarium, while for others they are simply an ingredient in a common type of sushi. However, for developmental biologists, they represent more than 100 years of research and education. Because their eggs are transparent, embryonic development and even the act of fertilization were easily viewed with microscopes in the 1800s. Beyond the embryo, sea urchins have long lives–some species living up to 200 years–making them interesting for developmental biologists who study aging.

However, along with their long lives comes a long breeding cycle. The most studied species of sea urchin have breeding cycles between one and two years. This is a severe limitation for research that focuses on knocking out, inserting, or editing genes, which rely on quickly produced offspring. As understanding the precise function of genes has come to dominate the field of developmental biology, sea urchins have fallen out of favor as a model animal.

Professor Shunsuke Yaguchi and his team at the University of Tsukuba Shimoda Marine Research Center feel that much can still be learned from sea urchin biology and set out to find a way to reduce the length of the breeding cycle. “We examined several species of sea urchins and modified their food supply and environment,” explains Professor Yaguchi. Through these efforts, they found Temnopleurus reevesii, a species that has a breeding cycle of only half a year.

As a proof of concept study, the researchers focused on a gene that is responsible for producing the pigment that colors sea urchins. Using CRISPR technology, they knocked out a pigment gene in a natural T. reevesii mutant that has a deep magenta color. The procedure successfully produced albino mutants, but there was a catch: only male sea urchins survived. Therefore, to create first-generation mutants, the team used eggs from wild-type T. reevesii and sperm from the knockout mutants. Then they used first-generation males and females to produce second-generation mutants that lacked both copies of the pigment gene.

These sea urchins were albino and could metamorphosize into juveniles and advance into adulthood. But the survival rate was quite low. “Many of the albino sea urchin larvae from the F2 generation could not survive exposure to ultraviolet light,” says Professor Yaguchi. “This suggests that the pigment might help protect sea urchins from UV light or fix the damaged tissue.”

“Having shown that gene editing is both possible and practical in this species of sea urchin, future research can use these techniques in sea urchins to advance the field of developmental biology.”

###

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.03.057

Tags: BiologyDevelopmental/Reproductive BiologyGenesGeneticsMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

September 12, 2025
Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Enhancing Patient Care with Continuous Medical Learning

Addiction-like Eating Tied to Deprivation and BMI

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.