• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Fast and selective optical heating for functional nanomagnetic metamaterials

Bioengineer by Bioengineer
April 16, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: CIC nanoGUNE

Compared to so-far used global heating schemes, which are slow and energy-costly, light-controlled heating, using optical degrees of freedom such as light wavelength, polarisation, and power, allows to implement local, efficient, and fast heating schemes for the use in nanomagnetic computation or to quantify collective emergent phenomena in artificial spin systems.

Single-domain nanoscale magnets interacting via contactless magneto-static interactions are key metamaterials for magnetic data storage devices, for low-power information processing, and to study collective phenomena in so-called artificial ices. These magnetic metamaterials are fabricated using electron-beam nano-lithography where any desired two-dimensional arrangement of thin-film magnetic elements with dimensions of a few hundred nanometers can be designed.

The functionality of such magnetic metamaterials is determined by the capability to reverse the net moment of each nanomagnet to minimize the overall mutual magnetostatic interactions, which happens more quickly at elevated temperatures. Over the years, different heating schemes have been employed to drive networks of interacting nanomagnets to an equilibrium state, ranging from thermal annealing of stable magnets to the fabrication of rapidly-fluctuating ultrathin superparamagnetic elements. As of today, thermal excitation of artificial spin systems is achieved by thermal contact to a hot reservoir, either by heating the entire underlying substrate, or by an electrical current in a conductive wire nearby. All these approaches are energetically inefficient, spatially non-discriminative, and intrinsically slow, with time scales of seconds to hours, making it difficult to reach a true equilibrium state in extended frustrated nanomagnetic lattices. Furthermore, for implementation in devices of magnetic metamaterials, e.g. magnonic crystals and nanomagnetic logic circuits, global heating lacks the control, spatial discrimination, and speed required for integrated operation with CMOS technology.

Applying a hybrid approach that combines a plasmonic nanoheater with a magnetic element, in this work the authors establish the robust and reliable control of local temperatures in nanomagnetic arrays by contactless optical means. Here, plasmon-assisted photo-heating allows for temperature increases of up to several hundred Kelvins, which lead to thermally-activated moment reversals and a pronounced reduction of the magnetic coercive field. Furthermore, the polarization-dependent absorption cross section of elongated plasmonic elements enables sublattice-specific heating on sub-nanosecond time scales, which is not possible with conventional heating schemes. The authors experimentally quantify the optical and magnetic properties of arrays of single hybrid elements as well as vertex-like assemblies, and present strategies how to achieve efficient, fast, and selective control of the thermally-activated magnetic reversal by choice of focal point, pump power, light polarization, and pulse duration.

Therefore, the development of efficient non-invasive plasmon-assisted optical heating of nanomagnets allows flexible control of length and time scales of the thermal excitation in magnetic metamaterials. This enables deeper studies of equilibrium properties and emergent excitations in artificial spin systems, as well as open doors for the practical use in applications such as low-power nanomagnetic computation.

###

Media Contact
Irati Kortabitarte
[email protected]

Original Source

https://nanogune.eu/nanomagnetism/newsroom/fast-and-selective-optical-heating-functional-nanomagnetic-metamaterials

Related Journal Article

http://dx.doi.org/10.1039/C9NR01628G

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share16Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Finds Over-the-Counter Pill Increases Access to Contraception, OHSU Reports

Novel Asymmetrical Molecule Unlocks Perfect Photocatalyst Potential

Iron Imbalance in Brain and Body Linked to Parkinson’s

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.